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Outline

Introduction — how to dissipate EM fields

Under-dense plasmas in jets?

Two-fluid, test-particle and Monte-Carlo simulations of particle
acceleration
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Problem

Relativistic jets are launched with high magnetization
parameter: σ � 1.

Collimation slow⇒ σ & 1, even at pc scale.
Lyubarsky MN 2010

Shocks (Fermi I acceleration) don’t work well for σ & 10−3

(generically perpendicular, low compression).

Reconnection needs a current sheet and a trigger.
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Potential Solution

Embedded fluctuations of the magnetic field (not Lorentz
factor) e.g., twists, reversals of polarity at launch.

Importance increases with radius: ωp ∝ 1/r .

Wait long enough JK & Mochol (2011)

Hit an obstacle:
MHD: compress current sheets at a weak shock⇒ enhance
reconnection rate.
Solar wind: Drake et al (2010), relativistic wind: Sironi & Spitkovsky (2011)

Under-dense plasma: fluctuations reflected as electromagnetic
modes forming a dissipative precursor
Amano & Kirk (2013), Mochol & Kirk (2013)
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Under-dense zones in a conical e± jet/beam

Three dimensionless jet parameters:

1 (Mass-loading)−1 µ = L/Ṁc2

2 Magnetization σ0 = Poynting flux/K.E. flux
3 A parameter describing the jet composition: e/m

Cross-jet potential × e/mc2: a0 = eBr/mc2

(Dimensionless luminosity/unit solid angle)1/2:

a0 = (4πL/Ωs)
1/2
(
e2/m2c5

)1/2

Constraints/Estimates:
1 a0 = 3.4 × 1014 √4πL46/Ωs

2 σ0 . µ
2/3 (for a supermagnetosonic jet)

3 Pair multiplicity κ0 = a0/(4µ) > 1
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Two-fluid simulations

Beyond MHD: simplest description that includes superluminal,
electromagnetic modes is two-fluid e± Amano & Kirk ApJ (2013)

Initial conditions:

Left half: circularly polarized, cold, static shear

Supersonic: Γ > σ1/2

Under dense: λ . c/ωp

Search for quasi-stationary precursor
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Precursor for Γu = 100, σ = 25

Snapshot at ωp0t = 1000
ω = 1.2ωp0, ω = 2.5ωp0, ω = 3.8ωp0
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Steady state for Γu = 100, σ = 25, ω = 1.2ωp0
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Steady state for Γu = 100, σ = 25, ω = 1.2ωp0

Stationary precursor for ω & ωp0 ⇐⇒ R & 1
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Test-particle trajectories

Particles followed to upstream or downstream boundary

Electrons energized in precursor, reflected downstream.
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Test-particle trajectories

Spectra on exiting

(local fluid frame)

Reflection probability
≈ 12%



Introduction Under-dense plasmas Two-fluid simulations Monte-Carlo simulations

Monte-Carlo simulations of Fermi-I acceleration

Shear wave (stripes) in upstream plasma

Zero average field in downstream

Scattering length� wavelength of (upstream) stripes

Two regimes:

Regime I: rg � λ (injection by SL waves)

Regime II: rg � λ (driven reconnection?)
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Monte-Carlo simulations of Fermi-I acceleration

Black: asymptotic distribution for parallel shock

s = 2.2
Blue: “Regular deflection” upstream, Achterberg et al (2001)

s = 2.6
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Conclusions, outlook

Energy stored in magnetic fluctuations dissipates at low
density via reflected superluminal waves in a shock precursor.

The precursor accelerates and reflects particles, injecting
them into a Fermi-I mechanism with γ ≈ γmax = σΓ.

Subsequent acceleration produces the same power-law
spectrum as a parallel, relativistic shock.

2D/3D: Effects of non-specular reflection?
(Analogue of shock corrugation in MHD regime Lemoine et al (2016))
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