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@ Under-dense plasmas in jets?

@ Two-fluid, test-particle and Monte-Carlo simulations of particle
acceleration



Introduction

Problem

@ Relativistic jets are launched with high magnetization
parameter: o > 1.

@ Collimation slow = o > 1, even at pc scale.

Lyubarsky MN 2010

@ Shocks (Fermi | acceleration) don’t work well for o > 1073
(generically perpendicular, low compression).

@ Reconnection needs a current sheet and a trigger.
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Potential Solution

@ Embedded fluctuations of the magnetic field (not Lorentz
factor) e.g., twists, reversals of polarity at launch.

@ Importance increases with radius: wp o< 1/r.

@ Wait long enough s« & mochol (2011)

@ Hit an obstacle:
e MHD: compress current sheets at a weak shock = enhance
reconnection rate.
Solar wind: prake et al (2010), relativistic wind: sironi & Spitkovsky (2011)
e Under-dense plasma: fluctuations reflected as electromagnetic
modes forming a dissipative precursor
Amano & Kirk (2013), Mochol & Kirk (2013)
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Under-dense plasmas

Under-dense zones in a conical e* jet/beam

Three dimensionless jet parameters:
@ (Mass-loading)™" ;1 = L/Mc?
© Magnetization o9 = Poynting flux/K.E. flux
© A parameter describing the jet composition: e/m

e Cross-jet potential X e/mc?: ay = eBr/mc?
o (Dimensionless luminosity/unit solid angle)"/?:

ay = (4nL/Q)""? (e2/m205)1/2
Constraints/Estimates:
Q@ ay =34x10"VarL/Q
Q oy < u?® (for a supermagnetosonic jet)
© Pair multiplicity ko = ao/(4u) > 1
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Under-dense zones in a conical e* jet/beam
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Under-dense plasmas

Under-dense zones in a conical e* jet/beam

Fluctuation wavelength 271 ap > > o> 1

|
Over-dense | Under-dense

r = dap/u r=Aaapg/og r = Aag
| | |
Subluminal ' | = .
constanty, o ~ o I acceleration! particle
: : zone : dominated
| | |
| | |
| | |
Superluminal — ' . :
no propagation, propagation |
| | |
ko = 1 4 %x10%cm 10%%cm
ko = 10° 4 x10'%m 10%cm

(Estimates for M87: L = 10*'erg/s, Q,/4n = 0.0006, 1 = ry = 10'5cm)



Two-fluid simulations

Two-fluid simulations

Beyond MHD: simplest description that includes superluminal,
electromagnetic modes is two-fluid €% amano & Kirk Aps (2013)
Initial conditions:
@ Left half: circularly polarized, cold, static shear
@ Supersonic: [ > ¢'/2
@ Under dense: 1 < ¢/wp

@ Search for quasi-stationary precursor
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Precursor for ', = 100, o = 25

Snapshot at wpet = 1000
w = 1.2wpo, w = 2.5wpo, w = 3.8wpo
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Steady state for ', = 100, o0 = 25, w = 1.2 wpo
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Steady state for ', = 100, o0 = 25, w = 1.2 wpo
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Stationary precursor for w 2 wpg &= R 2 1
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Test-particle trajectories

Particles followed to upstream or downstream boundary
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Electrons energized in precursor, reflected downstream.



Test-particle trajectories

Two-fluid simulations
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Monte-Carlo simulations of Fermi-I acceleration
@ Shear wave (stripes) in upstream plasma

@ Zero average field in downstream
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Monte-Carlo simulations

Monte-Carlo simulations of Fermi-| acceleration
@ Shear wave (stripes) in upstream plasma
@ Zero average field in downstream
@ Scattering length > wavelength of (upstream) stripes
@ Two regimes:

e Regime I: ry > A (injection by SL waves)

o Regime II: r, < A (driven reconnection?)
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Under-dense plasmas

Two-fluid simulations Monte-Carlo simulations

Monte-Carlo simulations of Fermi-l acceleration
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Monte-Carlo simulations

Conclusions, outlook

@ Energy stored in magnetic fluctuations dissipates at low
density via reflected superluminal waves in a shock precursor.

@ The precursor accelerates and reflects particles, injecting
them into a Fermi-I mechanism with ¥ ~ yn.x = oT.

@ Subsequent acceleration produces the same power-law
spectrum as a parallel, relativistic shock.

@ 2D/3D: Effects of non-specular reflection?
(Analogue of shock corrugation in MHD regime Lemoine et al (2016))
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