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Motivations

Coalescing compact binary systems

Binary neutron stars

Credits : NASA

Binary black holes

Credits : the Simulating eXtreme Spacetimes (SXS) project

The coalescence
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Motivations

A compact binary system

Post-Newtonian formalism

For weak gravitational field and slow motion, we can develop perturbatively the

dynamics in ε ∼ v2

c2
∼ GM

rc2
. Post-Newtonian order : 1PN = O

(
1
c2

)
.
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Building the post-Newtonian Fokker action

Principle of the Fokker action

1 We start from the classical action

Stot [gµν ,yA,vA] = Sgrav [gµν(x)] + Smat [vA; gµν(yA,vA)] ,

A = 1, 2.

2 solve the Einstein equation δStot
δgµν

= 0 → gµν [yA(t),vA(t), · · · ] ,

3 and construct the Fokker action

SFokker [yA,vA, · · · ] = Stot

[
gµν (yA,vA, · · · ) ,yA,vA

]
.

. The dynamics for the particles is unchanged

δSFokker

δyA
=

δStot

δgµν

∣∣∣∣∣
g=g︸ ︷︷ ︸

=0

·δgµν
δyA

+
δSmat

δyA

∣∣∣∣∣
g=g

=
δSmat

δyA

∣∣∣∣∣
g=g

.
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Building the post-Newtonian Fokker action

Our Fokker action

Sgrav =
c3

16πG

∫
d4x
√
−g

gµν (ΓρµλΓλνρ − ΓρµνΓλρλ

)
− 1

2
gµνΓµΓν︸ ︷︷ ︸

gauge fixing term

 ,
Smat = −

∑
A=1,2

mAc
2

∫
dt

√
− (gµν)A

v
µ
A
vνA
c2

.

Relaxed Einstein equations

�hµν =
16πG

c4
|g|Tµν + Λµν

[
h, ∂h, ∂2h

]
with hµν =

√
|g|gµν − ηµν the metric perturbation variable.

We don’t impose the harmonicity condition ∂νh
µν = 0.

Λµν encodes the non-linearities, with supplementary harmonicity terms containing
Hµ = ∂νh

µν .
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Building the post-Newtonian Fokker action

The multipolar post-Newtonian formalism

m
m

1

2

PN expansion

h

r

near zone

Near zone / Wave zone

. Near zone : post-Newtonian expansion h = h,
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Building the post-Newtonian Fokker action

The multipolar post-Newtonian formalism

m
m

1

2

PN expansion

multipole expansion
h

r

exterior zone

near zone
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Building the post-Newtonian Fokker action

The multipolar post-Newtonian formalism

m
m

1

2

PN expansion

multipole expansion
h

r

exterior zone

near zone
matching zone

Near zone / Wave zone

. Near zone : Post-Newtonian expansion h = h,

. Wave zone : Multipole expansion h =M(h),

. Matching zone : h =M(h) =⇒ M
(
h
)

=M(h).
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Building the post-Newtonian Fokker action

The multipolar post-Newtonian formalism

m
m

1

2

PN expansion

multipole expansion

actual solution

h

r

exterior zone

near zone
matching zone

Near zone / Wave zone

. Near zone : Post-Newtonian expansion h = h,

. Wave zone : Multipole expansion h =M(h),

. Matching zone : h =M(h) =⇒ M
(
h
)

=M(h).

Sg = FP
B=0

∫
dt

∫
d3x

(
r

r0

)B
Lg + FP

B=0

∫
dt

∫
d3x

(
r

r0

)B
M (Lg)
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Building the post-Newtonian Fokker action

Near zone / Wave zone

m
m

1

2

PN expansion

multipole expansion

actual solution

h

r

exterior zone

near zone
matching zone

Near zone / Wave zone

. Near zone : Post-Newtonian expansion h = h,

. Wave zone : Multipole expansion h =M(h),

. Matching zone : h =M(h) =⇒ M
(
h
)

=M(h) everywhere.

Sg = FP
B=0

∫
dt

∫
d3x

(
r

r0

)B
Lg + FP

B=0

∫
dt

∫
d3x

(
r

r0

)B
M (Lg)︸ ︷︷ ︸

O(5.5PN)

Laura BERNARD (IAP, GRεCO) Dynamics of compact binaries at the 4PN order



Building the post-Newtonian Fokker action

The tail effects at 4PN

. At 4PN we have to insert some tail effects,

h
µν

= h
µν
part −

2G

c4

+∞∑
l=0

(−1)l

l!
∂L

{
AµνL (t− r/c)−AµνL (t+ r/c)

r

}
. When inserted into the Fokker action it gives in the following contribution

Stail =
G2(m1 +m2)

5c8
Pf
2s0
c

∫ ∫
dtdt′

|t− t′| I
(3)
ij (t) I

(3)
ij (t′)
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Building the post-Newtonian Fokker action

Different regularization schemes

IR regularization

. IR singularity of the PN expansion at infinity : r0 (Hadamard regularization),

. From the tail contribution : s0,

. These two constants of regularization are linked through s0 = r0 e−α.

. The constant α will be determined by comparison with self-force results.

UV singularity at the location of the point particles

. Dimensional regularization,

1 We calculate the Lagrangian in d = 3 + ε dimensions.

2 We expand the results when ε→ 0 : appearance of a pole 1/ε.

3 We renormalize the pole through a redefinition of the trajectories of particles.

. The physical result should not depend on ε.
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Building the post-Newtonian Fokker action

The particular solution - post-Newtonian counting in a
Fokker action

Cancellations between gravitational and matter terms

We decompose h
µν
n −→

(
h
00ii ≡ h00 + h

ii
, h

0i
, h
ij
)

= O(n+ 2, n+ 1, n+ 2), (n pair).

We define the rests rn+2 = (r00iin+4, r
0i
n+3, r

ij
n+4) = O(n+ 4, n+ 3, n+ 4) , and expand the action

SF

[
h
]

= SF

[
hn
]

+

∫ [
δSF

δh
00ii

[
hn
]
r00iin+4 +

δSF

δh
0i

[
hn
]
r0in+3 +

δSF

δh
ij

[
hn
]
rijn+4 + · · ·

]

Using that δSF

δh
00ii

[
hn
]

= O
(
n
)
, δSF

δh
0i

[
hn
]

= O
(
n− 1

)
, δSF

δh
ij

[
hn
]

= O
(
n
)
, we get

. to have the Lagrangian at nPN i .e. O
(

1

c2n

)
, we need to know the metric at :

(
h00ii, h0i, hij

)
= O(n+ 2, n+ 1, n+ 2) = O

(
1

cn+2

)
.

. For 4 PN :
(
h00ii, h0i, hij

)
= O

(
1

c6
,
1

c5
,
1

c6

)
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Building the post-Newtonian Fokker action

The particular solution

Metric decomposition (in d dimensions)

h
00ii

= −
4

c2
V −

4

c4

[
d− 1

d− 2
V 2 − 2

d− 3

d− 2
K

]
−

8

c6

[
2X̂ + V Ŵ +

1

3

(
d− 1

d− 2

)2

V 3 − 2
d− 3

d− 1
ViVi − 2

(d− 1)(d− 3)

(d− 2)2
KV

]
+O (8) ,

h
0i

= −
4

c3
Vi −

4

c5

(
2R̂i +

d− 1

d− 2
V Vi

)
+O (7) ,

h
ij

= −
4

c4

(
Ŵij −

1

2
δijŴ

)
−

16

c6

(
Ẑij −

1

2
δijẐ

)
+O (8) .

Each potential obeys a flat space-time wave equation :

�V = −4πGσ ,

�Vi = −4πGσi ,

�Ŵij = −4πG

(
σij − δij

σkk
d− 2

)
− d− 1

2(d− 2)
∂iV ∂jV .

with σ = T00+T ii

c2
, σi = T0i

c
and σij = T ij .
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Results and consistency checks

The conservative dynamics at 4PN

The generalized Fokker Lagrangian at 4PN

L4PN =
Gm1m2

r12
+

1

2
m1v

2
1 +

1

2
m2v

2
2 + L1pn + L2pn + L3pn

+ L4pn[yA(t), vA(t), aA(t), ∂aA(t), · · · ] + Ltail
4pn

The 4PN equations of motion

ai1,4PN = −Gm2

r212
ni12 + ai1,1pn + ai1,2pn + ai1,3pn + ai1,4pn[α] + atail i1,4pn

3PN :

• ADM Hamiltonian (Damour, Jaranowski & Schäfer, 1999, 2001),
• Harmonic coordinates (Blanchet, Faye & de Andrade, 2000, 2001),
• Surface integrals (Itoh, Futamase & Asada 2001-2003),
• Effective field theory (Foffa & Sturani 2011).

4PN :
• Partial result from EFT (Foffa & Sturani 2012),
• ADM Hamiltonian formalism (Damour, Jaranowski & Schäfer 2013, 2014),
• Harmonic coordinates (Bernard, Blanchet, Bohé, Faye & Marsat 2015).
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Results and consistency checks

Some consistency checks

We have checked that

. the result does not depend on the regularisaton scheme : no r0 and no pole 1/ε,

. in the test mass limit we recover the Schwarzschild geodesics,

. the equations of motion are manifestly Lorentz invariant.

. we recover the conserved energy for circular orbits (known from self force
calculations).

Conserved quantities in harmonic coordinates

Energy E = Einst + Etail, with dE
dt

= 0,

Angular momentum J i = J iinst + J itail, with dJi

dt
= 0,

Linear momentum P i = P iinst + P itail, with dP i

dt
= 0,

Center of mass Gi = Giinst +Gitail, with dGi

dt
= P i,
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Results and consistency checks

Energy in harmonic coordinates

Barycentric coordinates Gi = 0

yi1,CM =
m2

m1 +m2
xi + · · ·+ yiCM,tail +O(10), yi2 = · · ·+O(10) ,

aiCM = −G(m1 +m2)

r3
xi + · · ·+ aiCM,tail +O(10)

Reduction to circular orbits

In polar coordinates (r, ϕ), we define ω = ϕ̇. For circular orbits ṙ = 0, ϕ̇ = 0 and v2 = r2ω2.

E(x; ν) =−
µc2x

2

[
1−

(
3

4
+

ν

12

)
x+

(
−

27

8
+

19ν

8
−
ν2

24

)
x2

+

(
−

675

64
+

(
34445

576
−

205π2

96

)
ν −

155ν2

96
−

35ν3

5184

)
x3

+

(
−

3969

128
+

(
9037π2

1536
−

123671

5760
+

448

15
(2γ + ln(16x))

)
ν

−
(

3157π2

576
−

198449

3456

)
ν2 +

301ν3

1728
+

77ν4

31104

)
x4
]
,

where x =

(
G(m1 +m2)Ω

c3

)2/3

and ν =
m1m2

(m1 +m2)2
is the symmetric mass ratio.
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E(x; ν) =−
µc2x

2

[
1−

(
3

4
+

ν

12

)
x+

(
−

27

8
+

19ν

8
−
ν2

24

)
x2

+

(
−

675

64
+

(
34445

576
−

205π2

96

)
ν −

155ν2

96
−

35ν3

5184

)
x3

+

(
−

3969

128
+

(
9037π2

1536
−

123671

5760
+

448

15
(2γ + ln(16x))

)
ν

−
(

3157π2

576
−

198449

3456

)
ν2 +

301ν3

1728
+

77ν4

31104

)
x4
]
,

where x =

(
G(m1 +m2)Ω

c3

)2/3

and ν =
m1m2

(m1 +m2)2
is the symmetric mass ratio.

Laura BERNARD (IAP, GRεCO) Dynamics of compact binaries at the 4PN order



Results and consistency checks

Periastron advance

Inverting the equations giving the constant of motion E and J = |J |, we get

ṙ2 = R [r;E, J ] ,

ϕ̇ = S [r;E, J ]

Orbital period P and fractional angle K

P = 2

∫ ra

rp

dr√
R[r]

and K =
1

π

∫ ra

rp

dr
S[r]√
R[r]

The precession of the periastron per orbital period is ∆Φ = 2π(K − 1).

For circular orbits

Kcirc = 1 + 3x+ (· · · )x2 + (· · · )x3 + (K
(4)
inst +K

(4)
tail)x

4 +O(x5)
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Results and consistency checks

Comparison with the Hamiltonian formalism [DJS 2014,2015]

Comparison of the EOM at 4PN

. We find a disagreement with the ADM result at 4PN

ai1 − (ai1)DJS =
2

15

G4mm1m2
2

c8r512

[
272

9
vi12(n12v12)

+ ni12

(
−

238

3
(n12v12)2 +

34

3
v212

)]
,

. No more discrepancy on the contribution of the non local part of the action to the
energy for circular orbits,

Etail = −224

15
(m1 +m2)ν2c2

[
ln(16x) + 2γE +

2

7

]

. Still a small discrepancy =⇒ Can be solved by adding a second ambiguity parameter
[Bernard et al., in preparation]
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Results and consistency checks

A second ambiguity parameter

A second ambiguity parameter β

. Introduce it in the acceleration,

∆ ai1 =
2

15

G4mm1m2
2

c8r512

[
n1(α, β) vi12(n12v12)

+ ni12

(
n2(α, β) (n12v12)2 + n3(α, β) v212

)]
,

. The two ambiguity parameters α and β are fixed by comparison with the energy and
periastron advance obtained by self-force calculations.

Improve the IR regularization scheme

. So far : Hadamard regularization,

. Work in progress : dimensional regularization,
. Origin of the second ambiguity parameter β,
. Test of robustness of the regularisation process.
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Summary and prospects

Summary & prospects

The 4PN dynamics

. We obtained the dynamics of compact binaries at 4PN using a Fokker Lagrangian,
adapted to the post-Newtonian formalism.

. We compared it to previous results in the Hamiltonian formalism and found a
discrepancy.

The introduction of a second ambiguity parameter can solve this discrepancy.
Our result gives the correct the energy and periastron advance for circular orbits
(obtained by self force results).

. Computation of all the conserved quantities in harmonic coordinates from the
Fokker action.

Prospects

. Use dimensional regularization for the IR divergences =⇒ meaning of the second
ambiguity parameter.

. Complete the dynamics at 4.5PN including radiation reaction effect and determine
the gravitational waveform at 4.5 PN.
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