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MOTIVATIONS

COALESCING COMPACT BINARY SYSTEMS

. Binary black holes
Binary neutron stars

Credits : NASA
Credits : the Simulating eXtreme Spacetimes (SXS) project

THE COALESCENCE

Inspiral Merger Ring-
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MOTIVATIONS

A COMPACT BINARY SYSTEM
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POST-NEWTONIAN FORMALISM

For weak gravitational field and slow motion, we can develop perturbatively the
Lo 2 .
dynamics in € ~ % ~ SAL. Post-Newtonian order : 1PN = O ().
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BUILDING THE POST-NEWTONIAN FOKKER ACTION

PRINCIPLE OF THE FOKKER ACTION

@ We start from the classical action
StOt [g.U«Va ya, VA] = Sgrav [gl“’(x)] + Smat [VA7 gHV (yAa VA)] )

A=1,2.

@ solve the Einstein equation ‘f;i:f’; =09, [ya®t),va(®),---],

@ and construct the Fokker action

Srokker [YA, VA, -] = Stot [, (Y4, VA, -++),¥4,va].
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BUILDING THE POST-NEWTONIAN FOKKER ACTION

PRINCIPLE OF THE FOKKER ACTION

@ We start from the classical action
StOt [g.U«Va ya, VA] = Sgrav [gl“’(m)] + Smat [VA7 gHV (yAa VA)] )

A=1,2.

@ solve the Einstein equation ‘Zi“’“ =09, [ya®t),va(®),---],

v

@ and construct the Fokker action

Srokker [YA, VA, -] = Stot [, (Y4, VA, -++),¥4,va].

> The dynamics for the particles is unchanged

6SFokker _ 6Stot .(59#1, + 6Smat
dya dguw _ 6ya 0ya _
9=9 g9=g
———
=0
_ 6Smat
dya
9g=g
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BUILDING THE POST-NEWTONIAN FOKKER ACTION

OUR FOKKER ACTION

3
C 4 v A A 1 v
Sgrav = 167G /d zy/~g |g" (FZ)\FVP - Fﬁurp/\) - 59#,,F“F )

gauge fixing term

'UM'UV
Smat = — Z mac /dt\/ (9uw) 4 *‘22’*.

A=1,2

RELAXED EINSTEIN EQUATIONS
v 16 G v v
Oh™ = =22 |g|T™ 4 A™ [h, Oh, 8%h)
e with h*" = \/|g|g"” — n"" the metric perturbation variable.
o We don't impose the harmonicity condition 9, h*” = 0.

o A"¥ encodes the non-linearities, with supplementary harmonicity terms containing
H" = 0,h"".
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BUILDING THE POST-NEWTONIAN FOKKER ACTION

THE MULTIPOLAR POST-NEWTONIAN FORMALISM

near zgne

NEAR ZONE / WAVE ZONE

> Near zone : post-Newtonian expansion h = h,
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BUILDING THE POST-NEWTONIAN FOKKER ACTION

THE MULTIPOLAR POST-NEWTONIAN FORMALISM

multipdle expansion

exterior zone

NEAR ZONE / WAVE ZONE
> Near zone : Post-Newtonian expansion h = h,

> Wave zone : Multipole expansion h = M(h),
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BUILDING THE POST-NEWTONIAN FOKKER ACTION

THE MULTIPOLAR POST-NEWTONIAN FORMALISM

multipdle expansion

exterior zone

#= matching zone

NEAR ZONE / WAVE ZONE
> Near zone : Post-Newtonian expansion h = h,

> Wave zone : Multipole expansion h = M(h),

> Matching zone : h = M(h) = M (h) = M(h).
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BUILDING THE POST-NEWTONIAN FOKKER ACTION

THE MULTIPOLAR POST-NEWTONIAN FORMALISM

multipdle expansion

exterior zone

«= matching zone

actual solution ¢ w

NEAR ZONE / WAVE ZONE
> Near zone : Post-Newtonian expansion h = h,
> Wave zone : Multipole expansion h = M (h),

> Matching zone : h = M(h) =— M (E) = M(h).

B B
S, = g‘:o/dt/d3x (%) Zg—i—gzo/dt/dgx (%) M (Ly)
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BUILDING THE POST-NEWTONIAN FOKKER ACTION

NEAR ZONE / WAVE ZONE

multipdle expansion

exterior zone

== matching zone

actual solution

—

NEAR ZONE / WAVE ZONE

> Near zone : Post-Newtonian expansion h = h,

> Wave zone : Multipole expansion h = M(h ),

> Matching zone : h = M(h) = M

o fof (2 e f o) s

(h) everywhere.

/\

O(5.5PN)
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BUILDING THE POST-NEWTONIAN FOKKER ACTION

THE TAIL EFFECTS AT 4PN

Source

P(t, r)

Mass- Quadrupole
Interaction

Past Light Cone

> At 4PN we have to insert some tail effects,

E,uu _ E,u,ut 2G = (—1)laL {Alzu(t - ’f‘/C) -
par

3 I r
1=0

AB(t 4 ) }

> When inserted into the Fokker action it gives in the following contribution

G2 + dtdt’
Seail = (m; m2) / / T 1@ 19
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BUILDING THE POST-NEWTONIAN FOKKER ACTION

DIFFERENT REGULARIZATION SCHEMES

IR REGULARIZATION
> IR singularity of the PN expansion at infinity : 7o (Hadamard regularization),
> From the tail contribution : sg,
> These two constants of regularization are linked through so = rge™“.

> The constant « will be determined by comparison with self-force results.
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BUILDING THE POST-NEWTONIAN FOKKER ACTION

DIFFERENT REGULARIZATION SCHEMES

IR REGULARIZATION
> IR singularity of the PN expansion at infinity : 7o (Hadamard regularization),
> From the tail contribution : sg,
> These two constants of regularization are linked through so = rge™“.

> The constant « will be determined by comparison with self-force results.

UV SINGULARITY AT THE LOCATION OF THE POINT PARTICLES

> Dimensional regularization,

@ We calculate the Lagrangian in d = 3 4 ¢ dimensions.
@ We expand the results when € — 0 : appearance of a pole 1/e.

© We renormalize the pole through a redefinition of the trajectories of particles.

> The physical result should not depend on e.
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BUILDING THE POST-NEWTONIAN FOKKER ACTION

THE PARTICULAR SOLUTION - POST-NEWTONIAN COUNTING IN A
FOKKER ACTION

CANCELLATIONS BETWEEN GRAVITATIONAL AND MATTER TERMS

We decompose bt —s (500“ =r" 47" ,EOi ,Ei]) =0(n+2,n+1,n+2), (n pair).

We define the rests 742 = (rn+4,’91+3, n+4) O(n+4,n+3,n+4), and expand the action

55 ooii . 88 o 8SE — 1
SF[EI = 5F mn] +/ |: 70(;:22 r”] 97«(14 + g r"] 9L+3 + JE; I:h"} T:"f+4 +ee

Using that % [hn] = O(n), ,01 [in] = O(n—1), ;ﬁsfj hn] = O(n), we get
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BUILDING THE POST-NEWTONIAN FOKKER ACTION

THE PARTICULAR SOLUTION - POST-NEWTONIAN COUNTING IN A
FOKKER ACTION

CANCELLATIONS BETWEEN GRAVITATIONAL AND MATTER TERMS

We decompose bt —s (500“ =r" 47" ,EOi ,Ei]) =0(n+2,n+1,n+2), (n pair).

We define the rests 742 = (rn+4,’91+3, n+4) O(n+4,n+3,n+4), and expand the action

55, o0ii . 08 i OSF = i
e[f) = el + [ [ o (ol P+ S0 o) 7 + S (] ¥+
Using that % [hn] = O(n), ,01 [hn] =O(n—1), ;ﬁsfj hn] = O(n), we get

. . 1 .
> to have the Lagrangian at nPN i.e. O (T) we need to know the metric at :
cC n

Qi 300 5ij 1
(hoo 7ho,hJ) :O(n+27n+1,n+2)20<m>.
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BUILDING THE POST-NEWTONIAN FOKKER ACTION

THE PARTICULAR SOLUTION - POST-NEWTONIAN COUNTING IN A
FOKKER ACTION

CANCELLATIONS BETWEEN GRAVITATIONAL AND MATTER TERMS

We decompose bt —s (500“ =r" 47" ,EOi ,Ei]) =0(n+2,n+1,n+2), (n pair).

We define the rests 742 = (rn+4,’91+3, n+4) O(n+4,n+3,n+4), and expand the action

55 ooii . 88 o 8SE — 1
SF[EI = 5F mn] +/ |: 70(;:22 r”] 97«(14 + g r"] 9L+3 + JE; I:h"} T:"f+4 +ee

Using that % [hn] = O(n), ,01 [in] = O(n—1), ;ﬁsfj hn] = O(n), we get

. . 1 .
> to have the Lagrangian at nPN i.e. O (W) we need to know the metric at :
c

(h“o ,ho,hJ) :O(n+27n+1,n+2):o<ﬁ>.

i i pij 1 1 1
> For 4 PN : (h*° ,h“,hﬂ):(’)(g,g,c—e)
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BUILDING THE POST-NEWTONIAN FOKKER ACTION

THE PARTICULAR SOLUTION

METRIC DECOMPOSITION (IN d DIMENSIONS)

pooi _ 4. 4 {Evz _ QEK]
c? ct|d-2 d—2
8 [ o 1 /d—1)\2 d—3 (d—1)(d—3) ]
— 22X+ VW4 ([— ) V32—V, —2— 2 YRV +0O(8),
cﬁ[ + +3(d72) -1 (d—2) +0®)
—014 4 4 . d—1
R =—-2V,— — (2R, +——VV; ) +0O(7),
c3 05( Jrd72 )+ ™

i 4. 1. .\ 16
h 7_674 Wij—i&jw - —

6

~ 1 ~
(Zij - 55”-2) +0O(8) .

Each potential obeys a flat space-time wave equation :

v = —4nrGo,
av; = —4nGo;,

- Okk d—1
Wi WG(U] (SJd_2> z(d_2)8V8]V

. 00 (X3 04 ..
with 0 = 3T 5, = = and 0y; = TY.
c c J

LAURA BERNARD (IAP, GReCO) DYNAMICS OF COMPACT BINARIES AT THE 4PN ORDER



RESULTS AND CONSISTENCY CHECKS

THE CONSERVATIVE DYNAMICS AT 4PN

THE GENERALIZED FOKKER LAGRANGIAN AT 4PN

Gmim 1 1
Lypn = % + §m1vf + §m21}§ + Lipn + Lopn + Lspn
12

+ Lapn[ya(t),va(t), aa(t), daa(t), -] + L,

THE 4PN EQUATIONS OF MOTION

, Gma , , , . o
1 1 i i i i tail i
14PN =~ 5 M2 + a1,1pn + @1,2pn + @1 3pn + A1 apn[Q] + a1 ip,

12

e ADM Hamiltonian (Damour, Jaranowski & Schifer, 1999, 2001),
3PN : e Harmonic coordinates (Blanchet, Faye & de Andrade, 2000, 2001),
) e Surface integrals (Itoh, Futamase & Asada 2001-2003),
o Effective field theory (Foffa & Sturani 2011).

o Partial result from EFT (Foffa & Sturani 2012),
4PN : o ADM Hamiltonian formalism (Damour, Jaranowski & Schafer 2013, 2014),
e Harmonic coordinates (Bernard, Blanchet, Bohé, Faye & Marsat 2015).
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RESULTS AND CONSISTENCY CHECKS

SOME CONSISTENCY CHECKS

WE HAVE CHECKED THAT
> the result does not depend on the regularisaton scheme : no ro and no pole 1/,
in the test mass limit we recover the Schwarzschild geodesics,

the equations of motion are manifestly Lorentz invariant.

v Vv V

we recover the conserved energy for circular orbits (known from self force
calculations).
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RESULTS AND CONSISTENCY CHECKS

SOME CONSISTENCY CHECKS

=
=

HAVE CHECKED THAT
the result does not depend on the regularisaton scheme : no rg and no pole 1/,
in the test mass limit we recover the Schwarzschild geodesics,

the equations of motion are manifestly Lorentz invariant.

v Vv Vv V

we recover the conserved energy for circular orbits (known from self force
calculations).

CONSERVED QUANTITIES IN HARMONIC COORDINATES
o Energy E = Einst + Evai, with € =0,
] i i p dJ?
e Angular momentum J* = Ji\ o + Jiau, with <5 =0,
) ) ) ) . api
o Linear momentum P* = Py + Pl with - =0,

o Center of mass G* = GY .. + G¢,,, with dd—c': = P,
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RESULTS AND CONSISTENCY CHECKS

ENERGY IN HARMONIC COORDINATES

BARYCENTRIC COORDINATES GZ =0
ma
mi + ma

Glm ¥ m2) iy 4 a e + O(10)

yi,CM = $i+"'+yéM,tai1+O(10)> yh = -+ 0(10),

i
acMm = —
73

LAURA BERNARD (IAP, GReCO) DYNAMICS OF COMPACT BINARIES AT THE 4PN ORDER



RESULTS AND CONSISTENCY CHECKS

ENERGY IN HARMONIC COORDINATES

BARYCENTRIC COORDINATES G* = 0

ma

yi,CM =——z'+. -+ yéM,tail + 0(10),
mi + m2

ys =+ 0(10),
G(mi +m2)

agm = — 3 a4+ aeuean + O(10)

REDUCTION TO CIRCULAR ORBITS

In polar coordinates (r, ), we define w = ¢. For circular orbits 7 = 0, » = 0 and v? = r2w?2.

2 2
pucx 3 v 27 19v v 5

E(z;v) = — 1-(2+Z2 Ly T
(25v) 2 [ (4+12)$+( s T s )"
675 34445 20572 15502 3503 4
+ |\ -+ - v— - T

64 576 96 96 5184
3969  /9037x2 123671 448

-2 —~ = (2y +1n(16

+( 128 +< 1536 sro0 | 1s 2y z”)”

315772 198449\ , 301w Tt
- ve+ + T,
576 3456

1728 31104
2/3
where © = (M) and v =

mima2

is the symmetric mass ratio.
3 (m1 + m2)?
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RESULTS AND CONSISTENCY CHECKS

PERIASTRON ADVANCE

Inverting the equations giving the constant of motion E and J = |J|, we get

i =RI[rE,J],
p=8[rE,J]

ORBITAL PERIOD P AND FRACTIONAL ANGLE K

Tadr 1 /
pP=2 and K = —
p VR[T] 4 p

The precession of the periastron per orbital period is A® = 27

K —1).

FOR CIRCULAR ORBITS

K™ =143z + ()2 + (--)a® + (K, + K&)' + 0(z°)
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RESULTS AND CONSISTENCY CHECKS

COMPARISON WITH THE HAMILTONIAN FORMALISM [DJS 2014,2015]

COMPARISON OF THE EOM AT 4PN

> We find a disagreement with the ADM result at 4PN

2 G4mm1m§ 272 ( )
— ————= | —vi5(ni2v
15 cgr?2 1217412012

b — (ai _
|~ (o :

. 238 34
+ nis ( — T(n121112)2 + ?U%2>:| ,
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RESULTS AND CONSISTENCY CHECKS

COMPARISON WITH THE HAMILTONIAN FORMALISM [DJS 2014,2015]

COMPARISON OF THE EOM AT 4PN

> We find a disagreement with the ADM result at 4PN

. . 2 G*mmim?2 [272 |
aj — (ai)pis = BW; [Tviz(nlzvm)

. 238 34
+niy ( - ?(n12vl2)2 + gvfz)} )

> No more discrepancy on the contribution of the non local part of the action to the
energy for circular orbits,
224

2
B = =T (ma + ma)v*c® [ln(lﬁx) + 298 + 5}

> Still a small discrepancy = Can be solved by adding a second ambiguity parameter
[Bernard et al., in preparation]

v
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RESULTS AND CONSISTENCY CHECKS

A SECOND AMBIGUITY PARAMETER

A SECOND AMBIGUITY PARAMETER 6

> Introduce it in the acceleration,

: 2 Gt*mmim?2 )
Adl = ——— "2 |ni(a, B) vig(n12v
TR = { 1(a, B) vig(n12v12)

+nl, (nz(m B) (n12v12)? + n3(a, B) U%Q)] ,

> The two ambiguity parameters o and 3 are fixed by comparison with the energy and
periastron advance obtained by self-force calculations.
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RESULTS AND CONSISTENCY CHECKS

A SECOND AMBIGUITY PARAMETER

A SECOND AMBIGUITY PARAMETER 6

> Introduce it in the acceleration,

: 2 Gt*mmim?2 )
Adl = ——— "2 |ni(a, B) vig(n12v
TR = { 1(a, B) vig(n12v12)

+nl, (nz(m B) (n12v12)? + n3(a, B) U%Q)] ,

> The two ambiguity parameters o and 3 are fixed by comparison with the energy and
periastron advance obtained by self-force calculations.

IMPROVE THE IR REGULARIZATION SCHEME

> So far : Hadamard regularization,
> Work in progress : dimensional regularization,

> Origin of the second ambiguity parameter 3,
> Test of robustness of the regularisation process.
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SUMMARY AND PROSPECTS

SUMMARY & PROSPECTS

THE 4PN DYNAMICS

> We obtained the dynamics of compact binaries at 4PN using a Fokker Lagrangian,
adapted to the post-Newtonian formalism.

> We compared it to previous results in the Hamiltonian formalism and found a
discrepancy.
e The introduction of a second ambiguity parameter can solve this discrepancy.
o Our result gives the correct the energy and periastron advance for circular orbits
(obtained by self force results).

> Computation of all the conserved quantities in harmonic coordinates from the
Fokker action.

PROSPECTS
> Use dimensional regularization for the IR divergences = meaning of the second
ambiguity parameter.
> Complete the dynamics at 4.5PN including radiation reaction effect and determine
the gravitational waveform at 4.5 PN.
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