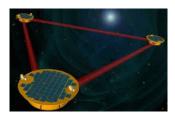

# LATE TIME COSMOLOGY WITH GRAVITATIONAL WAVES: The potential of the eLISA mission


#### Nicola Tamanini

Institut de Physique Théorique CEA-Saclay – CNRS – Université Paris-Saclay



#### Outline

- ► eLISA:
  - Mission design and current status
- Standard sirens:
  - Concept and problems
- Forecast constraints:
  - Approach: simulation of MBHB mergers, detection by eLISA, observation of EM counterpart
  - Standard cosmologies: ΛCDM, curvature, dynamical DE
  - Alternative cosmologies: early and interacting DE



[elisascience.org]

#### Proposed designs:

- Near-equilateral triangular formation orbiting around the Sun
- Number of laser links: 4 or 6 (2 or 3 active arms)
- ▶ Possible armlength: from 1 to 5 million km
- Mission duration: up to 5 years

#### Main target sources:

- ▶ MBHBs:  $10^4 10^7 M_{\odot}$
- LIGO-like BHBs:  $10-100~M_{\odot}$
- Stellar binaries: NSs, WDs
- Stochastic background: astrophysical & cosmological origin
- Extreme mass ratio inspirals (EMRIs)

#### eLISA roadmap:

- Expected noise level tested by LISA Pathfinder [lisapathfinder.org]
- ► ESA L3 slot selected for a GW mission (launch ~2030-2034)
- Final design to be decided in the next future:
  - Wait for final results from LISA Pathfinder
  - Funding and membership issues (NASA & EU member states)
  - ► GOAT committee reported on science return [elisascience.org]
    - 3 arms and earlier launch advised for better science
    - ► Based on recent studies from eLISA science working groups:

      [Klein et al, arXiv:1511.05581] [Caprini et al, arXiv:1512.06239]

      [NT et al, arXiv:1601.07112] [Sesana, arXiv:1602.06951]
- Call for mission expected in Autumn 2016
  - Selection in early 2017
  - ► Then 3-4 years of technological developments
  - ▶ Then 10 years to build spacecrafts



#### eLISA main science objectives:

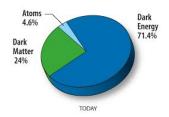
- Astrophysics of SMBHs
  - Origin, evolution and mass distribution
  - Role in galaxy formation
  - AGN physics
- Ultra-compact binaries (NSs, WDs, BHs)
  - ► Abundance, distribution and merger rate
  - Physics of NS and SNe
  - Multi-band GW astronomy with Earth-based detector
- ► Test of GR
  - Test of BH geometry (Kerr?)
  - Existence of event horizons
  - Mass and speed of gravitons
- Cosmology
  - Early-times: probing the TeV scale in the early universe
  - ▶ Late-times: probing the expansion with standard sirens

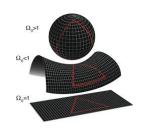


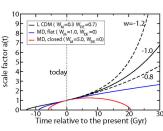
#### eLISA main science objectives:

- Astrophysics of SMBHs
  - Origin, evolution and mass distribution
  - Role in galaxy formation
  - AGN physics
- Ultra-compact binaries (NSs, WDs, BHs)
  - ► Abundance, distribution and merger rate
  - Physics of NS and SNe
  - Multi-band GW astronomy with Earth-based detector
- ► Test of GR
  - Test of BH geometry (Kerr?)
  - Existence of event horizons
  - Mass and speed of gravitons
- Cosmology
  - ▶ Early-times: probing the TeV scale in the early universe
  - ▶ Late-times: probing the expansion with standard sirens




#### eLISA main science objectives:


- Astrophysics of SMBHs
  - Origin, evolution and mass distribution
  - Role in galaxy formation
  - AGN physics
- Ultra-compact binaries (NSs, WDs, BHs)
  - ► Abundance, distribution and merger rate
  - Physics of NS and SNe
  - Multi-band GW astronomy with Earth-based detector
- Test of GR
  - Test of BH geometry (Kerr?)
  - Existence of event horizons
  - Mass and speed of gravitons
- Cosmology
  - ► Early-times: probing the TeV scale in the early universe
  - ► Late-times: probing the expansion with standard sirens



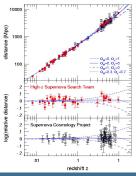

## Late-time cosmology with eLISA

- How can eLISA be used to probe late-time cosmology?
- What kind of information can we obtain?








The luminosity distance can be inferred directly from the measured waveform: GW sources are standard distance indicator!

$$h_{\times} = \frac{4}{\frac{d_{L}}{d_{L}}} \left(\frac{G\mathcal{M}_{c}}{c^{2}}\right)^{\frac{5}{3}} \left(\frac{\pi f}{c}\right)^{\frac{2}{3}} \cos \iota \sin[\Phi(t)]$$

If the redshift of the source is known, then one can fit the distance-redshift relation:

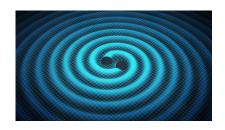
$$d_L(z) = \frac{c}{H_0} \frac{1+z}{\sqrt{\Omega_k}} \sinh \left[ \sqrt{\Omega_k} \int_0^z \frac{H_0}{H(z')} dz' \right]^{\frac{2}{2} \frac{1000}{900}}$$

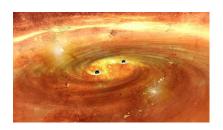
- ► Exactly as SNIa ⇒ standard sirens
- Need an EM counterpart!





#### With EM waves:


- Measuring redshift is easy: compare EM spectra
- Measuring distance is hard: need objects of known luminosity (SNIa → standard candles)


#### With GW:

- Measuring distance is easy: directly from the waveform (standard sirens)
- Measuring redshift is hard:
  - Degeneracy with masses in the waveform (GR is scale-free)
  - Need to identify an EM counterpart:
    - Optical, Radio, X-rays, γ-rays, ....
  - Need good sky location accuracy from GW detection to pinpoint the source or its hosting galaxy



How many standard sirens will be detected by el ISA?





- What type of sources can be used?
- ► For how many it will be possible to observe a counterpart?

#### Possible standard sirens sources for eLISA:

- ► MBHBs  $(10^4 10^7 M_{\odot})$
- ▶ LIGO-like BHBs  $(10 100 M_{\odot})$
- EMRIs

#### Possible standard sirens sources for eLISA:

- ► MBHBs  $(10^4 10^7 M_{\odot})$
- ▶ LIGO-like BHBs  $(10 100 M_{\odot})$
- ► EMRIs

#### Advantages of MBHB mergers:

- High SNR
- High redshifts (up to  $\sim$ 10-15)
- Merger within eLISA band
- ▶ Gas rich environment  $\rightarrow$  EM counterparts!

## eLISA cosmological forecasts: data simulation approach

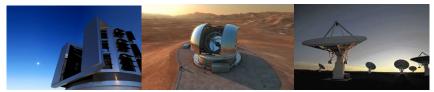
To address these questions and obtain cosmological forecasts, we have adopted the following **realistic strategy**:


[NT, Caprini, Barausse, Sesana, Klein, Petiteau, arXiv:1601.07112]

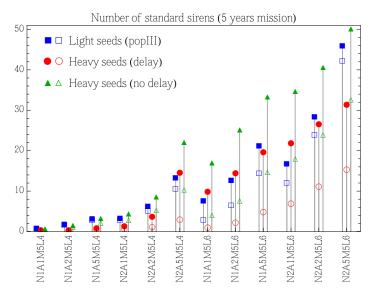
- ► Start from simulating MBHBs merger events using 3 different astrophysical models [arXiv:1511.05581]
  - Light seeds formation (popIII)
  - Heavy seeds formation (with delay)
  - Heavy seeds formation (without delay)
- Compute for how many of these a GW signal will be detected by eLISA (SNR>8)
- ▶ Among these select the ones with a good sky location accuracy ( $\Delta\Omega < 10 \, \rm deg^2$ )
- Focus on 5 years eLISA mission (the longer the better for cosmology)



## eLISA cosmological forecasts: data simulation approach

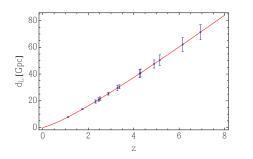

- ➤ To model the counterpart we generally consider two mechanisms of EM emission at merger: (based on [arXiv:1005.1067])
  - A quasar-like luminosity flare (optical)
  - Magnetic field induced flare and jet (radio)
- Magnitude of EM emission computed using data from simulations of MBHBs and galactic evolution

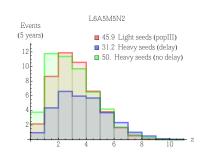



## eLISA cosmological forecasts: data simulation approach

Finally **to detect the EM counterpart** of an eLISA event sufficiently localized in the sky we use the following two methods:

- ▶ **LSST**: direct detection of optical counterpart
- ► SKA + E-ELT: first use SKA to detect a radio emission from the BHs and pinpoint the hosting galaxy in the sky, then aim E-ELT in that direction to measure the redshift from a possible optical counterpart either
  - Spectroscopically or Photometrically





## eLISA cosmological forecasts: MBHB standard sirens rate



## eLISA cosmological forecasts: MBHB standard sirens rate

#### Example of simulated catalogue of MBHB standard sirens:





Note 1: eLISA will be able to map the expansion at very high redshifts (data up to  $z \sim 8$ ), while SNIa can only reach  $z \sim 1.5$  Note 2: Few data at low redshift  $\Rightarrow$  bad for DE (but can use SNIa)

We first analysed the following 3 cosmological models:

- ► \CDM:
  - 2 parameters  $(\Omega_M, h)$
  - fix  $\Omega_M + \Omega_{\Lambda} = 1$ ,  $w_0 = -1 \& w_a = 0$
- ► \(\Lambda CDM + \text{curvature}\):
  - ▶ 3 parameters  $(\Omega_M, \Omega_{\Lambda}, h)$
  - fix  $w_0 = -1 \& w_a = 0$
- ▶ Dynamical dark energy:  $w = w_0 + \frac{z}{z+1}w_a$ 
  - $\triangleright$  2 parameters  $(w_0, w_a)$
  - $\Omega_M = 0.3, \ \Omega_{\Lambda} = 0.7 \ \& \ h = 0.67$

Performing a Fisher matrix analysis from the simulated data:

$$F_{ij} = \sum_{n} \frac{1}{\sigma_n^2} \left. \frac{\partial d_L(z_n)}{\partial \theta_i} \right|_{\text{fid}} \left. \frac{\partial d_L(z_n)}{\partial \theta_j} \right|_{\text{fid}}$$



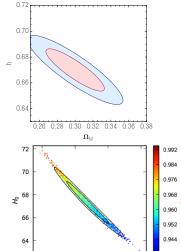
#### RESULTS: [NT et al, arXiv:1601.07112]

 $1\sigma$  constraints with L6A5M5N2 (best possible configuration):

$$\mbox{$\Lambda$CDM:} \begin{cases} \Delta\Omega_{M} & \simeq 0.025 \quad (8\%) \\ \Delta h & \simeq 0.013 \quad (2\%) \\ \\ \mbox{$\Lambda$CDM + curvature:} \end{cases} \begin{cases} \Delta\Omega_{M} & \simeq 0.054 \quad (18\%) \\ \Delta\Omega_{\Lambda} & \simeq 0.15 \quad (21\%) \\ \Delta h & \simeq 0.033 \quad (5\%) \\ \\ \mbox{$Dynamical DE:} \end{cases} \\ \begin{cases} \Delta w_{0} & \simeq 0.16 \\ \Delta w_{a} & \simeq 0.83 \end{cases}$$

Similar results with A2 and A1, but much worst with L4




#### Comparing with CMB ( $\land$ CDM):

#### From L6A5M5N2 with ΛCDM:

$$\begin{cases} \Omega_{M} = 0.3 \pm 0.025 \\ \Omega_{\Lambda} = 0.7 \pm 0.025 \\ H_{0} = 67 \pm 1.3 \, \mathrm{km/s/Mpc} \end{cases}$$

#### From today CMB [Planck2015]:

$$\left\{ egin{aligned} \Omega_M &= 0.3121 \pm 0.0087 \ \Omega_\Lambda &= 0.6879 \pm 0.0087 \ H_0 &= 67.51 \pm 0.64 \, \mathrm{km/s/Mpc} \end{aligned} 
ight.$$





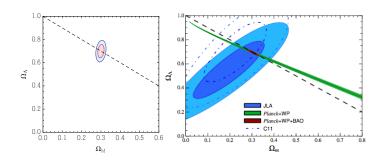
0.38

0.30

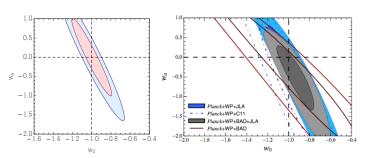
 $\Omega_{m}$ 

0.34

0.26


#### Comparing with Supernovae (∧CDM):

Expected from L6A5M5N2:


From today SNe: [Betoule et al (2014)]

$$\Omega_M = 0.3 \pm 0.009$$

$$\Omega_M=0.289\pm0.018$$



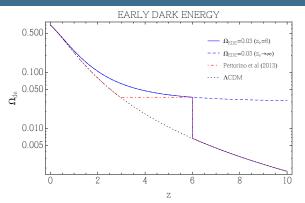
#### Comparing with SNIa/CMB/BAO (dark energy):



## Expected from L6A5M5N2: (fixing $\Omega_M$ , $\Omega_\Lambda$ , h)

$$w_0 = -1.00 \pm 0.16$$
  
 $w_a = 0.00 \pm 0.83$ 

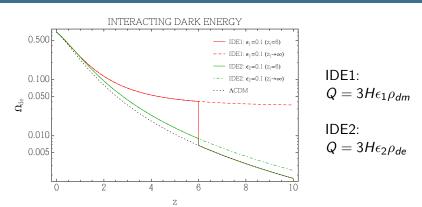
From CMB + SNe + BAO: [Betoule 
$$et\ al\ (2014)$$
]


$$w_0 = -1.073 \pm 0.146$$
  
 $w_a = -0.066 \pm 0.563$ 



#### Investigation of alternative cosmological models:

[C. Caprini & NT, arXiv:1607.08755]


- Same approach to construct standard sirens catalogues
- ► Focus on simple phenomenological models:
  - Early dark energy (EDE)
  - Interacting dark energy (IDE)
- ▶ Deviations from  $\Lambda$ CDM allowed only up to a determined redshift  $(z_e, z_i)$

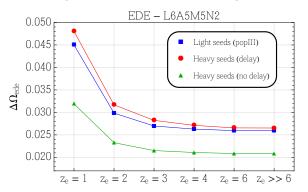


**Early dark energy**: non negligible DE energy density at early times:  $\Omega_{de}(z) \to \Omega_{de}^e \neq 0$  as  $z \to \infty$ 

$$\Omega_{de}(z) = \frac{\Omega_{de}^{0} - \Omega_{de}^{e} \left[1 - (z+1)^{3w_{0}}\right]}{\Omega_{de}^{0} + \Omega_{m}^{0}(z+1)^{-3w_{0}}} + \Omega_{de}^{e} \left[1 - (z+1)^{3w_{0}}\right]$$

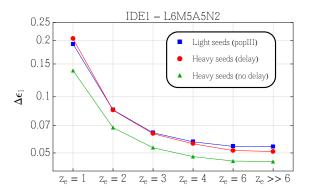





#### Interacting dark energy:

non-gravitational interaction between DM and DE

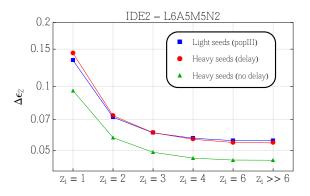
$$\dot{\rho}_{dm} + 3H\rho_{dm} = Q \qquad \dot{\rho}_{de} + 3H(1+w_0)\rho_{de} = -Q$$




#### Results for EDE: [C. Caprini & NT, arXiv:1607.08755]



- ▶ If  $z_e \gtrsim 10$  then strong constraints from CMB:  $\Delta\Omega_{\rm ede} = 0.0036$  [Planck, 2015]
- ► However if  $z_e \lesssim 10$  then CMB results do not apply and only eLISA can constrain deviations from ΛCDM


#### Results for IDE1: [C. Caprini & NT, arXiv:1607.08755]



- ▶ If  $z_i \gg 10$  present constraints are better by two order of magnitude:  $\sim 10^{-4}$  (Planck+SNIa+BAO+H<sub>0</sub>) [1506.06349, 1605.04138]
- ▶ No analyses with current data if  $z_i \lesssim 10$



#### Results for IDE2: [C. Caprini & NT, arXiv:1607.08755]



- ▶ If  $z_i \gg 10$  presents constraints give comparable results:  $\sim 10^{-2}$  (Planck+SNIa+BAO+H<sub>0</sub>) [1506.06349, 1607.05567]
- ▶ If  $z_i \lesssim 10$  then eLISA is expected to perform much better

## eLISA cosmological forecasts: future prospects

#### Possible further work:

- Exploit other eLISA GW sources for cosmology (lower z) (this will improve the results from MBHBs only)
  - ► FMRI
  - LIGO-like BH binaries
- Cosmology with multi-band GW observations
- Cross correlation with galaxy catalogues: anisotropies
- In general anything that can be done with SNIa can be repeated for standard sirens (with less data but at much higher redshifts)

#### Conclusions

- MBHBs are excellent standard sirens for eLISA
  - Systematic-free measures of distance (no calibration needed as for SNe)
- Need to identify EM counterparts to measure redshift
  - Will depend on final eLISA design, capacities of future telescopes and magnitude of EM emissions
- Forecast accuracy (with MBHBs only) comparable with present probes, but not with future ones (e.g. Euclid), however:
  - New cosmological information from GWs (not EM only): help in solving possible tensions (e.g. H₀)
  - ► Will improve including analysis for **other eLISA sources** (EMRIs, LIGO-like BHs, ...)
  - ▶ Direct probe of expansion at **high redshifts** (up to  $z \sim 8$ ): good for testing alternative cosmological models

