Massive black hole mergers in the Universe

Marta Volonteri Institut d'Astrophysique de Paris

Established by the European Commission

Massive black holes in galaxies

~100 MBHs detected in nearby galaxies to-date

Black hole masses scale with galaxy mass: $\sim 10^{-3}$ - 10^{-4} M_{gal}

Galaxies

mass:10⁹-10¹² M_{sun}

 $R_{halo}{}^{\sim}GM_{halo}/\sigma^2$

MEGAPARSEC

 $R_{bulge} \text{~~} GM_{bulge} / \sigma^2$

KILOPARSEC

I parsec=3.26 light years= 3×10^{18} cm $\sigma \sim 50-400$ km/s for most galaxies

Massive Black Holes mass: 10⁵-10⁹ M_{sun}~10⁻³-10⁻⁴ M_{gal}

 R_{bondi} ~ GM_{BH}/c_s^2

PARSEC

 R_{inf} ~ GM_{BH}/σ^2

PARSEC

 R_{sch} =2G M_{BH}/c^2

MICROPARSEC

 $c_s \sim 10-100$ km/s for most galaxies $c=3 \times 10^5$ km/s

Massive black holes in galaxies

- Massive Black Holes (MBHs) are found in the centers of most nearby galaxies
- MBHs should naturally grow along with galaxies through accretion and MBH-MBH mergers and influence the galaxy through feedback

How do MBHs grow ?

Gas accretion vs MBH-MBH mergers

How do MBHs grow ?

Mergers: total mass density in MBHs is constant in time: just reshuffle the distribution of masses

Accretion: adds external matter => total mass density in MBHs increases with time

Yu & Tremaine 2002

How do MBHs grow ?

Mergers: total mass density in MBHs is constant in time: just reshuffle the distribution of masses

Accretion: adds external matter => total mass density in MBHs grows with time

Soltan's argument: BH mass density increases by > one order of magnitude in the last ~10 Gyr: **accretion** leads

Yu & Tremaine 2002

Fraction of mass gained through MBH-MBH mergers

 $f_{merge} = \Delta M_{merge}/M_{BH}$ ΔM merge is the sum of the masses of all merged MBHs and does not account for gas accretion on these MBHs

Dubois, Volonteri & Silk 2013

Are MBH-MBH mergers important?

Gas-poor galaxies!

Dubois, Volonteri & Silk 2013

Are MBH-MBH mergers important?

High-mass MBHs $\leftarrow \rightarrow$ High mass galaxies

High-mass galaxies $\leftarrow \rightarrow$ Gas poor galaxies

Credit: Hubble/GalaxyZoo

MBHs in galaxy mergers

Courtesy of Monica Colpi

milli	-рс ро	c kpc	log(distance)
MERGER	BINARY	PAIRING	CONTEXT
Numerical Relativity + analytical techniques	Nuclear discs, circumbinary discs, stellar scattering	Galaxy merger simulations	Cosmological simulations + semi-analytical models

Severely multi-scale problem – at the current time initial and boundary conditions are all idealized and not self-consistent

MBHs in galaxy mergers

- High-z and small galaxies: gas is important
- Low-z and large galaxies: star-dominated
- Different MBH-MBH dynamical evolution
- Different gravitational-wave probes (eLISA, PTA)

MBHs mergers and gravitational waves

Context: the cosmic merger rate

Romulus, Tremmel+ 2016

- BHs sit in the center of galaxies. Galaxies sit in the center of dark matter halos.
- We need the merger rate of BHs with mass between 100 and 10¹⁰ Msun from today to the Big Bang (or when BHs form in galaxies)
- This means we need to estimate the merger rate of halos with mass from 10⁶ Msun when t~100 Myr to 10¹⁵ Msun when t~14 Gyr
- We need a statistical sample of these halos and the embedded BHs

- Number density of $10^{15} M_{sun}$ halos ~10 Gpc⁻³ => need to probe a volume of at least 0.1-1 Gpc³
- We also need to resolve 10^6 Msun halos at redshift ~20 => $m_{res} < 10^4 M_{sun}$
- N=V $\rho_{cr}\Omega_m/m_{res}{\sim}10^{16}$ particles
- Several (human) years of running time, several millions €

Cosmological simulations vs SAMs

- The advantage of an analytical approach is that in principle it has unlimited spatial and mass resolution
- The disadvantage is that one looses control on non-analytical processes (those that cannot be described by well behaved mathematical functions, e.g., galaxy mergers)
- In cosmological simulations the best possible resolution is ~100 pc, way way far from when MBHs merge

eLISA pseudo merger rate

SAMs:

Barausse+ (Mh>105-106 Msun)

MV, Sesana+ (Mh>10⁵-10⁶ Msun) cyan, light blue, blue: large BH seeds light green, dark green: small BH seeds

SIMs:

Salcido+ (Eagle, Mh>1.4e10 Msun) Blecha+ (Illustris, Mh>1.4e11 Msun) Tremmel+ (Romulus, Mh>3.5e8 Msun)

Number of mergers per year: between I and 80

PTA pseudo merger rate

SAMs:

Barausse+ (Mh>10⁵-10⁶ Msun)

MV, Sesana+ (Mh>10⁵-10⁶ Msun) cyan, light blue, blue: large BH seeds light green, dark green: small BH seeds

SIMs: Blecha+ (Illustris, Mh>1.4e11 Msun) Tremmel+ (Romulus, Mh>3.5e8 Msun)

Number of mergers per year: between 0.03 and 0.09

I. Halos and galaxies

Which galaxies/halos host BHs

How good we are at modelling them

I. Halos and galaxies

Habouzit, MV+16

2. BH "seeds"

How massive BHs are at birth

When they form

How many per galaxy

2. BH "seeds"

PopIII black holes: LIGO

The most massive remnant BHs for binaries at $0.1Z^{\odot}$ have a mass of ~ 42 Msun (deMink & Belczynski 15)

"Chemically homogeneous" binary black hole mergers, Mtot \leq 100 Msun (deMink & Mandel 16)

Binary BHs with Mtot up to ~160Msun may form in globular clusters (Belczynski et al. 2014; Rodriguez et al. 2016)

Mergers with Mtot> 200-300 Msun are of primordial origin, ~0.1-1/yr (Kinugawa+14,16; Hartwig, MV+16; Inayoshi+16; Dvorkin+16)

How long it takes for BHs to merge in halo/galaxy merger

How often mergers "fail"

Cosmological 'zoomed-in' simulation of dwarf galaxy with mass ~ 10^{10} M_o at z = 0.

dark matter particle mass 1.6 \times 10⁴ M_{\odot} gas particle mass 3.3 \times 10³ M_{\odot} gravitational softening 87 pc

Tremmel+ 2015

Cosmological 'zoomed-in' simulation of dwarf galaxy with mass ~ 10^{10} M_o at z = 0.

dark matter particle mass 1.6 \times 10⁴ M_{\odot} gas particle mass 3.3 \times 10³ M_{\odot} gravitational softening 87 pc

Tremmel+ 2015

- High-z and small galaxies: gas is important
- Low-z and large galaxies: star-dominated

High-z and small galaxies: gas is important

Galaxy scales: 100 kpc-10 pc

Galaxy scales: 100 kpc-10 pc

- A large bound nucleus speeds up MBH pairing
- •Galaxy merger simulations with idealized initial conditions, resolution ~1-10 pc
- When the mass ratio of the merging galaxies is >0.1 the two MBHs "find each other", in about **1-5 Gyr**
- When the separation of the MBHs reach the minimum resolution of the simulation cannot follow dynamics anymore

(e.g., Yu 2002, Callegari+2009, 2011; Van Wassenhove+2012; Van Wassenhove+14, Capelo+15, Roskar+15)

0.1 kpc

Circumnuclear disc simulations: I kpc-0.1 pc

- Idealized initial conditions
- Sensitively depend on thermodynamic properties of the gas disk (i.e., hot, cold, lumpy, star formation, SN feedback)
- AGN feedback not included
- •Within *I-100 Myr* MBHs reach resolution limit

Circumbinary discs: 0.1-0.001pc

- •A binary clears a cavity in its surroundings due to the binary's tidal torques
- The cavity does not prevent gas inflows and eventual accretion
- Migration to the GW-dominated regime should occur rapidly, ~1-10 Myr

e.g., Armitage & Natarajan 2005; MacFayden & Milosavljevic 2008, Roedig+2012; Shi+12; Noble+12; D'Orazio et al. 2013; Farris et al. 2014; Shi & Krolik 2015...

Low-z and large galaxies: star-dominated

Galaxy merger simulations: 100 pc-0.01 pc

- Idealized initial conditions, start well within the galaxy merger phase (100 pc vs 100 kpc)
- Direct N-body, collisionless particles only
- •When separation <~pc scale, 3-body scattering dominate
- •The evolution of binaries continues at ~constant rate leading to merger in less than ~*I* Gyr

e.g., Gualandris & Merritt 2012, Vasiliev+14, Khan+12, Holley-Bockelmann and Khan 2015; Vasiliev et al. 2015; Sesana and Khan 2015

brief review: MV, Bogdanovic, Dotti, Colpi 2015

• First, halos merge.

~ Gyr at low-z

DF timescale from Boylan-Kolchin+08

• Then, galaxies.

DF timescales from Boylan-Kolchin+08 + McWilliams+14

0≤q≤1 : mass ratio

Gas dominated mergers

• Finally, black holes.

in **TOTAL** > Gyr at low-z

Boylan-Kolchin+08

+

McWilliams+14

+ 100 Myr (nuclear/binary disc evolution)

Star-dominated mergers

Halos, galaxies, black holes

Sesana & Khan 15

ж.

+

Star-dominated mergers

• Halos, galaxies, black holes

• For both gas and star-dominated mergers

An e=0, $10^8 M_{sun}$ binary with:

- q=1 will coalesce by z=0 if halo merger started by z~0.1-0.2 => ~1.5 Gyr
- q=0.1 will coalesce by z=0 if halo merger started by z~0.4-0.5 => ~5 Gyr

Bottlenecks

Gas-dominated:

- at z>2-ish the circumnuclear/binary disc phase is the longest should look for BINARY AGN
- at z<2-ish dynamical friction is long, should look for DUAL AGN (but see Dotti et al. 2015)

Star-dominated:

 dynamical friction and scattering phases are ~ equally long, should look for DUAL AGN and BINARY AGN (if enough gas to shine!)

Where are the dual AGN?

• Spectroscopy

If a MBH is moving and accreting, the emission lines will be blue- or red- shifted with respect to the host galaxy rest frame (Comerford et al. 2009)

• Imaging

Search for AGN pairs that are not lenses

Offset/dual AGN fraction from a few % (Mortlock+99; Foreman+09) up to 30% (Koss et al. 2012, Comerford & Greene 2014)

Van Wassenhove, MV+12

Dual fraction- I:2 Coplanar Spiral-Spiral

	Dual Timescale	Dual Fracti	ion
No cutoff	I2 Myr	19.2%	
d > 1 kpc	10 Myr	16.5%	Imaging HS I
d > 10 kpc	0.06 Myr	0.1%	SDSS
v > 150 km/s	3 Myr	4.8%	Spectroscopy

- Observational limitations reduce detectable dual emission
- Secondary has higher Eddington ratio (cf. Comerford+15), but (early on) lower luminosity

Where are the binary AGN?

- Optical surveys:
 Offset broad lines + periodicities
- Radio:

Imaging – one serendipitous binary (Rodriguez+2006), none in systematic searches (Burke-Spolaor+2011,2014)

At most a few %

See Bogdanovic 2015 for a review

Where are the binary AGN?

- MBH merger rate from hierarchical evolving MBH population
- select only MBHs with v_{orb} >2000 km/s
- assign luminosity quasars are triggered by galaxy mergers
- select only QSOs detectable in the SDSS (M_i>-22)

• assign lifetime
$$t_{\text{life}} = 6 \text{Myr} \left(\frac{M_{\text{bin}}}{10^7 \,\text{M}_{\odot}} \right)^{3/4} \left(\frac{4 \, q}{1 + q^2} \right)^{3/8} \left(\frac{10^{\lambda}}{0.1} \right)^{-5/8}$$
 (Haiman et al. 2009)

All MBHs are active at some level

Merger-driven quasar activity

MBH binaries are expected to occur at
higher redshift
lower masses
than sampled by the SDSS quasar catalog

Summary

- MBHs in merging galaxies have along journey
- Beginning to end, it takes between I and I0 Gyr
- Caveat: multi-scale problem, most studies are highly idealized and not connected self-consistently to the previous "level"
- Full "merger rate" predictions still have large uncertainties be careful when you pick a merger rate!

Summary

- Because of lifetimes/observability requirement the fraction of detectable duals and binaries is expected to be low
- Although a variety of signatures have been predicted by theoretical studies, in practice, only a few approaches have been used to systematically search for binaries in observational campaigns