Gravitational waves within the magnetar model of superluminous supernovae and gamma-ray bursts

Wynn C.G. Ho

University of Southampton, UK

for details, see MNRAS, in press (arXiv:1606.00454)

GRavitational-wave Astronomy Meeting in PAris – 29 August–2 September 2016

Outline

- Superluminous supernovae (SLSNe) and long-lived gamma-ray bursts (GRBs)
- Magnetars and their spin-down power and timescale
- Millisecond magnetar energy and spin evolution
- Gravitational wave (GW) emission versus electromagnetic dipole radiation
 - o simple constraints
 - $_{\circ}$ effect on light curve
- Conclusions

Superluminous supernovae and long-lived gamma-ray bursts

Superluminous supernovae (SLSNe)

 more luminous
 bright at late times (~10–100 of days)

Long-lived gamma-ray bursts (GRBs)

 subset of short and long GRBs
 bright late-time plateau – extra energy for prolonged time (~10⁴ s)

Neutron star spins and magnetic fields

see talks by Kramer and Lentati

- *P*–*P* diagram: measured spin period and time derivative
 - \circ millisecond pulsars $B \sim 10^8 10^{10} \, \mathrm{G}$ \circ radio pulsars $B \sim 10^{11} 10^{13} \, \mathrm{G}$ \circ magnetars $B \sim 10^{13} 10^{15} \, \mathrm{G}$
- Rotational energy $E_{\rm rot} = I\Omega^2/2 = 2 \times 10^{52} \text{ erg} (P/1 \text{ ms})^{-2}$
- Magnetic dipole radiation $_{\circ}$ energy loss $L_{mag} \equiv \dot{E}_{mag} \sim -B^2 R^6 \Omega^4 / c^3$ $_{\circ}$ timescale $t_{mag} = |E_{rot}/\dot{E}_{mag}| = 2 \times 10^5 \text{ s } B_{14}^{-2} (P/1 \text{ ms})^2$

◦ infer magnetic field with $\dot{E}_{rot} \equiv I\Omega\dot{\Omega} = 4\pi^2\dot{P}/P^3 = L_{mag}$ ⇒ $B = 3.2 \times 10^{19} \text{ G} (P\dot{P})^{1/2}$

Using millisecond magnetars to power SLSNe and GRBs

see also talk by Rezzolla for GRBs

• Rotational energy $E_{\rm rot} = I\Omega^2/2 = 2 \times 10^{52} \text{ erg} (P/1 \text{ ms})^{-2}$

 $_{\circ}$ rotational energy loss $I\Omega\dot{\Omega} = L_{mag} + L_{gw}$

where $L_{mag} \sim -B^2 R^6 \Omega^4 / c^3$ \circ on timescale $t_{mag} = 2 \times 10^5$ s $B_{14}^{-2} (P/1 \text{ ms})^2$

• Energy evolution from 1st law (eg Arnett 1980) $\circ \frac{\partial E}{\partial t} = -p \frac{\partial V}{\partial t} + L_{mag} - L_{rad}$ see also talk by Nissanke $\frac{\partial (tE)}{\partial t} = t (L_{mag} - L_{rad})$

where radiative diffusion $L_{rad} = 4\pi r^2 \frac{c}{3\kappa\rho} \frac{\partial (E/V)}{\partial r} \approx tE/t_{diff}^2$

- Coupled evolution of *E* and Ω (eg Kasen+Bildsten 2010)
 light curve L_{rad}(t)
 - $_{\circ}$ peak luminosity $L_{\rm peak}$ (= max $L_{\rm rad}$) and peak time $t_{\rm peak}$

Gam-Yam 2012

▲ SLSN-I

bright at late times (~10–100 of days) ————

Superluminous supernovae (SLSNe)

• more luminous

-23

-22

-21

-20

-19

-18

-17

-16

-15

-14

-13

-100

Absolute magnitude (mag)

Using millisecond magnetars to power SLSNe and GRBs

• Rotational energy $E_{rot} = I\Omega^2/2 = 2 \times 10^{52} \text{ erg } (P/1 \text{ ms})^{-2}$ • rotational energy loss $I\Omega\dot{\Omega} = L_{mag} + L_{gw}$ where $L_{mag} \sim -B^2 R^6 \Omega^4/c^3$ • on timescale $t_{mag} = 2 \times 10^5 \text{ s } B_{14}^{-2} (P/1 \text{ ms})^2$

• Energy evolution from 1st law (eg Arnett 1980) $\circ \frac{\partial E}{\partial t} = -p \frac{\partial V}{\partial t} + L_{mag} - L_{rad}$ $\frac{\partial (tE)}{\partial t} = t (L_{mag} - L_{rad})$ where radiative diffusion $L_{rad} = 4\pi r^2 - \frac{c}{c} - \frac{\partial (E/V)}{\partial t} \approx 1$

where radiative diffusion $L_{rad} = 4\pi r^2 \frac{c}{3\kappa\rho} \frac{\partial (E/V)}{\partial r} \approx tE/t_{diff}^2$

• Coupled evolution of *E* and Ω (eg Kasen+Bildsten 2010) $_{\circ}$ light curve $L_{\rm rad}(t)$

 $_{\circ}$ peak luminosity $L_{\rm peak}$ (= max $L_{\rm rad}$) and peak time $t_{\rm peak}$

Using millisecond magnetars to power SLSNe and GRBs

• Rotational energy $E_{rot} = I\Omega^2/2 = 2 \times 10^{52} \text{ erg } (P/1 \text{ ms})^{-2}$ \circ rotational energy loss $I\Omega\dot{\Omega} = L_{mag} + L_{gw}$ where $L_{mag} \sim -B^2 R^6 \Omega^4/c^3$ \circ on timescale $t_{mag} = 2 \times 10^5 \text{ s } B_{14}^{-2} (P/1 \text{ ms})^2$

- Energy evolution from 1st law (eg Arnett 1980) $\circ \frac{\partial E}{\partial t} = -p \frac{\partial V}{\partial t} + L_{mag} - L_{rad}$ $\frac{\partial (tE)}{\partial t} = t (L_{mag} - L_{rad})$ where radiative diffusion $L_{rad} = 4\pi r^2 \frac{c}{3\kappa \Omega} \frac{\partial (E/V)}{\partial r} \approx tE/t_{diff}^2$
- Coupled evolution of *E* and Ω (eg Kasen+Bildsten 2010) $_{\circ}$ light curve $L_{\rm rad}(t)$
 - $_{\circ}$ peak luminosity $L_{\rm peak}$ (= max $L_{\rm rad}$) and peak time $t_{\rm peak}$

Simple constraints on amplitudes of ellipticity and r-mode

- Magnetic dipole radiation $L_{mag} \sim B^2 \Omega^4 R^6/c^3$ \circ energy loss time $t_{mag} = |E_{rot}/\dot{E}_{mag}| = 2 \times 10^5 \text{ s } B_{14}^{-2} (P/1 \text{ ms})^2$
- GW from ellipticity $L_{gw} \sim \epsilon^2 \Omega^6 G l^2 / c^5$ \circ energy loss time $t_{gw} = |E_{rot}/L_{gw}| = 2 \times 10^4 \text{ s} (\epsilon/10^{-3})^{-2} (P/1 \text{ ms})^4$
- GW from r-mode oscillation $L_{gw,r} \sim \alpha^2 \Omega^8 GIMR^4/c^7$ \circ energy loss time

 $t_{\rm gw,r} = |E_{\rm rot}/L_{\rm gw,r}| = 1 \times 10^5 \text{ s} (\alpha/0.03)^{-2} (P/1 \text{ ms})^6$

- GW constraints if $t_{\rm gw}$ or $t_{\rm gw,r}\,{<}\,t_{\rm mag}$
- Rotational energy loss $I\Omega\dot{\Omega} = L_{mag} + L_{gw}$

Simple constraints on amplitudes of ellipticity and r-mode

- Magnetic dipole radiation $L_{mag} \sim B^2 \Omega^4 R^6/c^3$ \circ energy loss time $t_{mag} = |E_{rot}/\dot{E}_{mag}| = 2 \times 10^5 \text{ s } B_{14}^{-2} (P/1 \text{ ms})^2$
- GW from ellipticity $L_{gw} \sim \epsilon^2 \Omega^6 G l^2 / c^5$ \circ energy loss time $t_{gw} = |E_{rot}/L_{gw}| = 2 \times 10^4 \text{ s} (\epsilon/10^{-3})^{-2} (P/1 \text{ ms})^4$
- GW from r-mode oscillation $L_{gw,r} \sim \alpha^2 \Omega^8 GIMR^4/c^7$ • energy loss time

 $t_{\rm gw,r} = |E_{\rm rot}/L_{\rm gw,r}| = 1 \times 10^5 \text{ s} (\alpha/0.03)^{-2} (P/1 \text{ ms})^6$

- GW constraints if $t_{\rm gw}$ or $t_{\rm gw,r}\,{<}\,t_{\rm mag}$
- Rotational energy loss $I\Omega\dot{\Omega} = L_{mag} + L_{gw}$

Effect of GWs on SN/GRB light curve

• Energy evolution from 1st law (eg Arnett 1980)

$${}_{\circ} \frac{\partial E}{\partial t} = -p \frac{\partial V}{\partial t} + L_{\rm mag} - L_{\rm rad}$$

- Rotational energy loss $I\Omega\dot{\Omega} = L_{mag} + L_{gw}$
- Magnetic dipole radiation $L_{mag} \sim B^2 \Omega^4 R^6/c^3$ \circ energy loss time $t_{mag} = 2 \times 10^5$ s $B_{14}^{-2} (P/1 \text{ ms})^2$
- GW from ellipticity $L_{gw} \sim \epsilon^2 \Omega^6 G l^2 / c^5$ \circ energy loss time $t_{gw} = |E_{rot}/L_{gw}| = 2 \times 10^4 \text{ s} (\epsilon/10^{-3})^{-2} (P/1 \text{ ms})^4$
- GW from r-mode oscillation $L_{\rm gw,r} \sim \alpha^2 \Omega^8 \ GIMR^4/c^7$ $_{\odot}$ energy loss time

 $t_{\rm gw,r} = |E_{\rm rot}/L_{\rm gw,r}| = 1 \times 10^5 \text{ s} (\alpha/0.03)^{-2} (P/1 \text{ ms})^6$

see Kashiyama et al 2016, for more detailed calculation with GW constraints

Effect of GWs on SN/GRB light curve

• Energy evolution from 1st law (eg Arnett 1980)

$$\circ \frac{\partial E}{\partial t} = -p \frac{\partial V}{\partial t} + L_{\text{mag}} - L_{\text{rad}}$$

- Rotational energy loss $I\Omega\dot{\Omega} = L_{mag} + L_{gw}$
- Magnetic dipole radiation $L_{mag} \sim B^2 \Omega^4 R^6/c^3$ \circ energy loss time $t_{mag} = 2 \times 10^5$ s $B_{14}^{-2} (P/1 \text{ ms})^2$
- GW from ellipticity $L_{gw} \sim \epsilon^2 \Omega^6 G l^2 / c^5$ \circ energy loss time $t_{gw} = |E_{rot}/L_{gw}| = 2 \times 10^4 \text{ s} (\epsilon/10^{-3})^{-2} (P/1 \text{ ms})^4$
- GW from r-mode oscillation $L_{gw,r} \sim \alpha^2 \Omega^8 GIMR^4/c^7$ \circ energy loss time $t_{gw,r} = |E_{rot}/L_{gw,r}| = 1 \times 10^5 \text{ s} (\alpha/0.03)^{-2} (P/1 \text{ ms})^6$

Effect of GWs on SN/GRB light curve

• Energy evolution from 1st law (eg Arnett 1980)

$$\circ \frac{\partial E}{\partial t} = -p \frac{\partial V}{\partial t} + L_{\text{mag}} - L_{\text{rad}}$$

- Rotational energy loss $I\Omega\dot{\Omega} = L_{mag} + L_{gw}$
- Magnetic dipole radiation $L_{mag} \sim B^2 \Omega^4 R^6/c^3$ \circ energy loss time $t_{mag} = 2 \times 10^5$ s $B_{14}^{-2} (P/1 \text{ ms})^2$
- GW from ellipticity $L_{gw} \sim \epsilon^2 \Omega^6 G l^2 / c^5$ \circ energy loss time $t_{gw} = |E_{rot}/L_{gw}| = 2 \times 10^4 \text{ s} (\epsilon/10^{-3})^{-2} (P/1 \text{ ms})^4$
- GW from r-mode oscillation $L_{gw,r} \sim \alpha^2 \Omega^8 GIMR^4/c^7$ \circ energy loss time
 - $t_{\text{gw,r}} = |E_{\text{rot}}/L_{\text{gw,r}}| = 1 \times 10^5 \text{ s} (\alpha/0.03)^{-2} (P/1 \text{ ms})^6$

Conclusions

GW effect on magnetar model of SNe/GRBs if

- ellipticity $\epsilon > 10^{\text{-4}}$, but theory/observation $< 10^{\text{-3}}$
- r-mode α > 0.01, but theory/observation < 10⁻³/0.1 (see also talk by Andersson)

 \Rightarrow magnetar model is ok for SNe/GRBs without GWs

