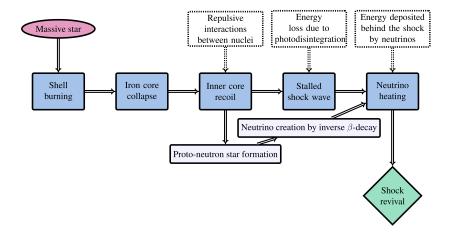
Can Gravitational Waves provide insights about the Core-Collapse Supernova mechanism?

Haakon Andresen

 $\mathbf{MPA}$ 

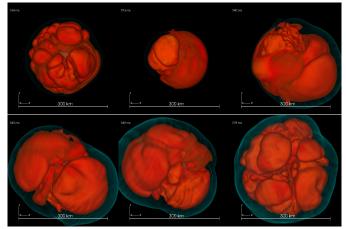

02.09.2016



Ewald Müller, Thomas Janka and Bernhard Müller (arXiv:1607.05199)

Haakon Andresen

#### Explosion mechanism




Haakon Andresen

#### Post bounce

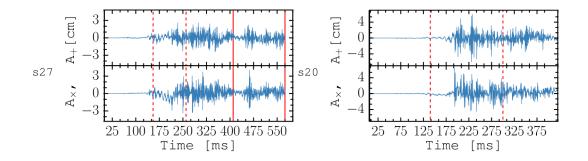
- Stalled accretion shock
  - Hot bubble convection
  - Large scale shock deformation (SASI)
- Shock revival
  - ▶ Neutrino heating
  - Supported by SASI activity

Image credit: F.Hanke et al 2013



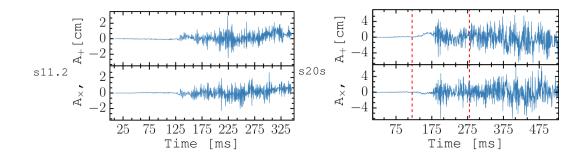
#### Numerical models

Progenitors:  $11.2M_{\odot}$ ,  $20M_{\odot}$  and  $27M_{\odot}$ (Woosley et al 2002 & 2007) Numerical simulations

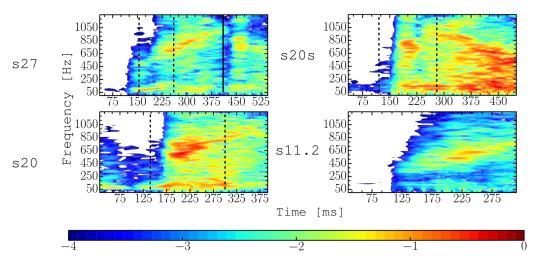

- ► Three non-exploding models: s11.2, s20, s27 (Hanke et al 2013)
- ► One successful explosion: s20s (Melson et al 2015)
  - Strange quark contributions to the nucleon spin

# Quadrupole radiation

$$Q^{ij} = \int d^3x \rho(x^i x^j - \frac{1}{3}r^2 \delta^{ij})$$
$$\mathbf{h}^{TT}(\mathbf{X}, t) = \frac{1}{D} \left[A_+ \mathbf{e}_+ + A_\times \mathbf{e}_\times\right]$$
$$A_{\times/+} = f(\ddot{Q}^{ij}),$$


Haakon Andresen

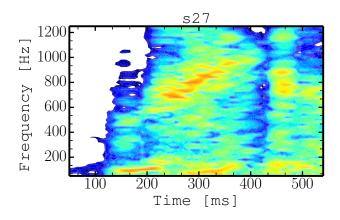
### Wave forms




Haakon Andresen

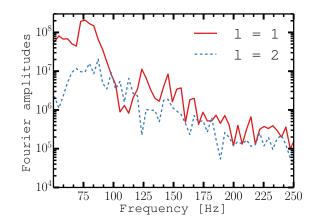
### Wave forms




Haakon Andresen

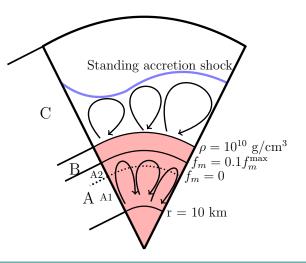


Haakon Andresen


## Low frequency signal

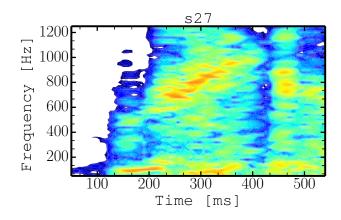
- Large scale shock deformation (SASI)
  - Only seen in models with strong SASI activity
  - Frequency overlap with the SASI




## Low frequency signal

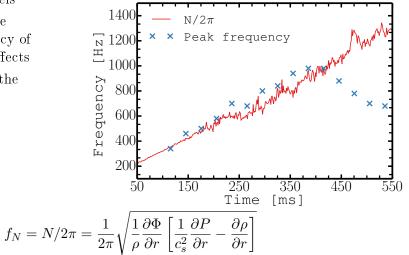
- Large scale shock deformation (SASI)
  - Only seen in models with strong SASI activity
  - Frequency overlap with the SASI




## Low frequency signal

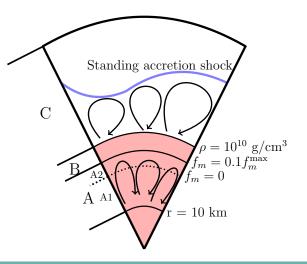
- Large scale shock deformation
  - Post-shock volume mass distribution
  - Interaction with proto-neutron star




### High frequency signal

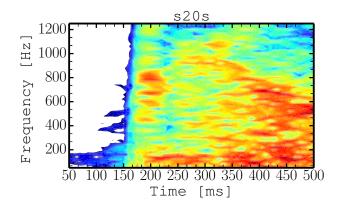
- Present in all models
- Consistent with the theoretical frequency of buoyancy driven effects




### High frequency signal

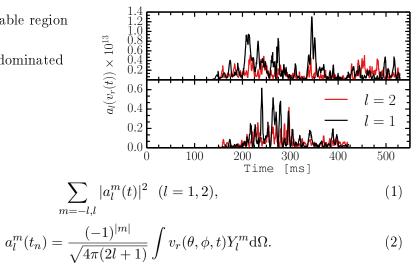
- ▶ Present in all models
- Consistent with the theoretical frequency of buoyancy driven effects
- Convection inside the proto-neutron star




## High frequency signal

- ▶ Present in all models
- Consistent with the theoretical frequency of buoyancy driven effects
- Convection inside the proto-neutron star




### Exploding model

- Similar to non-exploding models before onset of shock expansion
- Increased gravitational wave emission



### Exploding model

- Geometry of the convectively unstable region with in the PNS
- ► Shifts to a l = 2 dominated state



Haakon Andresen

### Detection prospects

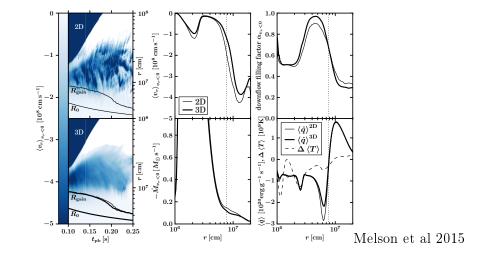
- ▶ Optimal orientate detector signal-to-noise ratio
  - ▶ Ratio of power in the low and high frequency band
- Advance LIGO (D  $\sim 1 \text{ kpc}$ )
- Einstein Telescope (D  $\sim 10 \text{ kpc}$ )

## Conclusions

- ▶ Core collapse supernovae are a promising source for gravitational waves and more importantly gravitational waves can provide insight into the collapse scenario
- ▶ Good detection possibilities in future detectors

Can Gravitational Waves provide insights about the Core-Collapse Supernova mechanism?

Haakon Andresen


 $\mathbf{MPA}$ 

02.09.2016



Ewald Müller, Thomas Janka and Bernhard Müller (arXiv:1607.05199)

Haakon Andresen



|         | s27  |      |       |          | s20   |       |       |          | s11.2 |      |       |          | s20s  |      |       |
|---------|------|------|-------|----------|-------|-------|-------|----------|-------|------|-------|----------|-------|------|-------|
|         | Low  | High | Total | Low/High | Low   | High  | Total | Low/High | Low   | High | Total | Low/High | Low   | High | Total |
| AdvLIGO | 3.7  | 4.5  | 8.8   | 0.82     | 5.3   | 7.7   | 9.4   | 0.82     | 1.3   | 4.1  | 4.3   | 0.32     | 10.2  | -    | -     |
| ET-C    | 50.0 | 64.0 | 81.3  | 0.78     | 73.9  | 109.3 | 131.9 | 0.83     | 18.1  | 50.9 | 53.9  | 0.36     | 139.7 | -    | -     |
| ET-B    | 78.5 | 73.7 | 107.7 | 1.07     | 113.9 | 127.0 | 170.6 | 0.74     | 28.0  | 67.3 | 72.8  | 0.42     | 217.3 | -    | -     |

50 million core hours 1/2 year SuperMUC (LRZ Garching) and MareNostrum (Barcelona)