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Enhancement of the abundance of massive halos/galaxies in denser environments

Local density versus tidal effects
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isotropic environment Wall-like environment filament-like environment

credits: C. Pichon

Density bias
See also: 

 Kaiser 84, White 88, Efstathiou+98,...

Density: trace of the hessian
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Local density versus tidal effects
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Tidal effects 
tidal tensor: traceless part of the hessian 

 

See e.g.: 
Sheth et Tormen04, Croton+07, Dalal

+08,Hahn+09,Wang+11, ...

- Tidal suppression of halo growth in 
the vicinity of a massive object 
- Different formation histories for 
haloes in different environments 
- dynamical connection between 
halo and the cosmic web DM simulation
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Tidal effects 
tidal tensor: traceless part of the hessian 

 

See e.g.: 
Sheth et Tormen04, Croton+07, Dalal

+08,Hahn+09,Wang+11, ...

- Tidal suppression of halo growth in 
the vicinity of a massive object 
- Different formation histories for 
haloes in different environments 
- dynamical connection between 
halo and the cosmic web

A critical ingredient: the 
anisotropy of the cosmic web

Node

High  
mass

Low  
mass

Codis+15
Node

 See also: Laigle+15



 See also: Aragon-Calvo+07, Hahn+07, 
Sousbie+08, Paz+08, Zhang+09, Codis
+12, Libeskind+13, Laigle+15, Aragon-
Calvo 13, Dubois+14
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Dynamical connection between galaxies and 
cosmic web (TTT)



We look for an effect: 
- distinct from the local density 
- at larger scale than the group scale 

Tidal field drives:  
- a dynamical connection between galaxies/
haloes and the cosmic web 
- different formation histories for haloes in 
different environment (simulations) 
Crucial: the anisotropy of the environment  
what is the impact for galaxies? 

We will look for the evolution of galaxy 
properties as a function of their distance to the 
filament
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We look for an effect: 
- distinct from the local density 
- at larger scale than the group scale 

Tidal field drives:  
- different formation histories for haloes in 
different environment  
- a dynamical connection between galaxies/
haloes and the cosmic web 
Crucial: the anisotropy of the environment  
what is the impact for galaxies? 

We will look for the evolution of galaxy 
properties (mass, colour-type) as a function of 
their distance to the filament



Reconstructing the cosmic web: galaxy distribution

VIPERS Survey:  
24 deg   on ESO VLT, 8m (see Guzzo+14) 

Costly to probe the cosmic web at ~Mpc scale 

Skeleton extraction in VIPERS W1, 0.4<z<1, i    <22.5, scale of ~10cMpc (Malavasi+16)

2

AB
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See also e.g.: 
Kraljick+in prep., GAMA



9.5<log (M  /M   )<10

Spectroscopy versus photometry: complementary approach

Spectroscopic surveys: redshift precisely known, but relatively poor sampling

Photometric surveys: redshift  more uncertain, but good sampling and larger range

i<22

R
a
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*

log (M  /M   )=9.5 *

11<log (M  /M   )<12 *
10<log (M  /M   )<11 *

Dec



The persistent skeleton: 
a tracer of filaments

Credit: K.G. Lee  and C. Stark 

Sousbie+11

credits: Sousbie
13

‣ Filaments: a set of gradient lines connecting 
peaks 

‣ Skeleton lines between peaks pass through 
one saddle point 

‣ Persistence allows to work with noisy 
datasets 



The persistent skeleton: 
a tracer of filaments

Credit: K.G. Lee  and C. Stark 

Sousbie+11
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‣ Filaments: a set of gradient lines connecting 
peaks 

‣ Skeleton lines between peaks pass through 
one saddle point 

‣ Persistence allows to work with noisy 
datasets 

credits: Sousbie
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The COSMOS2015 catalogue

credits:ESO
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30 photometric bands from NUV to FIR 
and 30 000 spectra 
New IR (IRAC, Spitzer) and NIR 
(UltraVISTA DR2): crucial for accurate 
redshifts and masses at high-redshift 
➡Extraction of a new catalog
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Spitzer

Vista



The COSMOS2015 catalogue	

     = 0.008,     = 0.5% at i  <21+     = 0.021,     =13.2% at z>3

Photo-z are computed with LePhare (Arnouts+2002, Ilbert+2006)  

Comparison with spectroscopic redshifts

17

Laigle+16
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The Horizon-AGN 
simulation

‣ Run with RAMSES, not calibrated on the 
local Universe  

‣ Cosmological volume (100 Mpc/h) 

‣ Subgrid physics (below ~1kpc):  
stellar evolution and feedback, BH formation, 
BH growth, AGN feedback, gas cooling and 
heating 

‣ Galaxies and haloes extracted with 
AdaptaHOP (Aubert+04) 

‣ Photometry modeling and spectra 
production

Ks,r,NUV image             Hz-AGN mock

Horizon-AGN provides realistic 
galaxy properties, distribution and 

clustering

Dubois+14

u,r,z

Horizon-AGN mock image 
(Kaviraj, Laigle+16)19



The Horizon-AGN ligthcone Dubois+14

credits: Y. Dubois

z
z=3z=2

field of view 
1deg  for z>1

5deg  for z<1
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Tracing the filaments with COSMOS2015      Laigle+ in prep.

21

Slice thickness based on  
photo-z errors
0.5<z<0.9, 1.5 deg 
thickness ~75cMpc,  
width ~ 70cMpc

2

We use all galaxies with 
log(M)>10 for the reconstruction

Horizon-AGN lightcone
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Tracing the filaments with COSMOS2015      Laigle+ in prep.



Tracing the filaments with COSMOS2015      Laigle+ in prep.Reliability of the 2D skeleton

projected 3D skeleton 
2D skeleton from true redshift 
2D skeleton from photo-z
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 Tests on the Hz-AGN lightcone



Tracing the filaments with COSMOS2015      Laigle+ in prep.

 Tests on the Hz-AGN lightcone
projected 3D skeleton 
2D skeleton from true redshift 
2D skeleton from photo-z
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Mass gradients in 3D

- Galaxies in the vicinity of nodes are 
removed from the analysis 
- Each galaxy is down-weighted by the 
inverse of the density 

➡ We measure an effect specific to the 
filaments

filament

dfil
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Mass gradients in 3D filament

dfil
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Can we measure it in projected 
2D slices of thickness 75 cMpc 
with photometric redshifts and 
masses? 



Tracing the filaments with COSMOS2015      Laigle+ in prep.Mass gradients in 2D

The contribution of 
node is down-

weighted

dfil

Mass gradients towards filament found in 2D in simulated and observed data

filament
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Mass gradients 
towards filaments: 
Is it an effect purely 
driven by the local 
mass-density 
relation?
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Tracing the filaments with COSMOS2015      Laigle+ in prep.Mass gradients in 2D

The contribution of 
node is down-

weighted

dfil

Mass gradients are partly explained by the local mass-density relation

filament
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Colors-type gradients in COSMOS2015

At a fixed mass, passive galaxies closer to filaments than star forming
30

passive

SF

dfil

filament

passive
SF



colour gradients 
towards filaments: 
Is it an effect 
purely driven by 
the local density?

31

0.6 0.8 1.0 1.2 1.4 1.6

1.8

2.0

2.2

2.4

2.6

2.8

2.01

2.91

3.82

4.72

5 cMpc

Ra  (deg +149)

D
ec

 (d
eg

)

<z>=0.70

Passive galaxies 

Star forming galaxies

Colors-type gradients in COSMOS2015
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colour gradients 
towards filaments: 
Is it an effect 
purely driven by 
the local density?
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colour gradients 
towards filaments: 
Is it an effect 
purely driven by 
the local density?
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Colors-type gradients in COSMOS2015

At a fixed mass, passive galaxies closer to filaments than star forming
34

No trend detected for 
the reshuffled galaxies 

The gradients are 
driven by the 
geometry of the 
cosmic web

dfil
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SUMMARY
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1) We are able to extract reliably the cosmic web 
in 2D with photometric redshift and to measure 
an environmental signal 

2) We find mass and colour-type gradients 
towards filaments for galaxies both in the 
simulations and in the observations 

3) Those gradients can not be explained by the 
local density itself. 
➡ Crucial: the anisotropy of the environment  
Large-scale tidal field impacts both  
halo/galaxy dynamics and galaxy mass assembly. 
Galaxy dynamics impacts star formation via the 
geometry of the gas inflow?

Next step:  
Redshift evolution of the signal? Intrinsic alignment signal in 2D?


