Environment Quenching and Structural Change

Joanna Woo ETH Zürich

With M. Carollo, S. Faber, A. Dekel, S. Tacchella, D. Koo

What we know about quenching so far

• Studies in quenching reveal correlations between:

- Morphology and quenching

What we know about quenching so far

• Studies in quenching reveal correlations between:

- Morphology and quenching
- Morphology and environment

What we know about quenching so far

• Studies in quenching reveal correlations between:

- Morphology and quenching
- Morphology and environment
- Environment (M_{halo}) and quenching

Morphology and Environment: Centrals

Low M_h $10^{8.4} < \Sigma_{1 \rm kpc} M_o^{-1} \rm kpc^2 < 10^{8.8}$ 0.25 $\square 10^{9.0} < \Sigma_{1 \rm kpc} M_o^{-1} \rm kpc^2 < 10^{9.4}$ $10^{9.6} < \Sigma_{1 \text{kpc}} \text{ M}_{o}^{-1} \text{ kpc}^{2} < 10^{10.0}$ Counts 0.20 (a) 0.15 Vormalised $\Sigma_{1 \text{kpc}}$ 0.10 0.05 0.00 -12 -11 -10 -9 log SFR/M_{*} (yr⁻¹)

Both the halo and $\Sigma_{1 \text{kpc}}$ are *independently* correlated with central "quenching"

Morphology and Environment: Centrals

Both the halo and $\Sigma_{1 \text{kpc}}$ are *independently* correlated with central "quenching"

Morphology and Quenching: Satellites

Halo mass and $\Sigma_{1 \text{kpc}}$ are correlated with satellite quenching in different regions of the halo

Woo et al., (2015)

Satellites: Delayed-then-Rapid Quenching?

Delayed-then-rapid quenching not a unique solution

Alternatives:

- Slow + Fast quenching
- Early + Late quenching

9.75 < log M_∗/M_☉ < 10

Satellites occupy different regions of sSFR- $\Sigma_{1 \text{kpc}}$

9.75 < log M_∗/M_☉ < 10

Satellites occupy different regions of sSFR- $\Sigma_{1 \text{kpc}}$

9.75 < log M_∗/M_☉ < 10

Satellites occupy different regions of sSFR- $\Sigma_{1 \text{kpc}}$

9.75 < log M_∗/M_☉ < 10

Satellites occupy different regions of sSFR- $\Sigma_{1 \text{kpc}}$

• But still higher than $\Sigma_{1 \text{kpc}}$ of SF satellites

Satellite Quenching Depends on Environment

Woo et al., (2013)

Other features of the sSFR- Σ_{1kpc} correlates smoothly with the "environment"

Other features of the sSFR- Σ_{1kpc} correlates smoothly with the "environment"

What We've Learned So Far

- Many features of the sSFR- Σ_{1kpc} vary smoothly with the environment
- Satellites *begin* quenching with range of $\Sigma_{1 \text{kpc}}$
 - (assuming GV = transitioning)
 - What we'd expect for cluster processes
- But once they're *completely quenched* they have high $\Sigma_{1 \text{kpc}}$

Why is Σ_{1kpc} for quenched galaxies always high?

Something causes $\Sigma_{1 \text{kpc}}$ to increase, but only after the start of quenching

- Ram pressure compression
- Tidal compression
- Tidally triggered instability
- Harassment

$\Sigma_{1 \text{kpc}}$ never increases for individual satellites

- "Progenitor bias" (van Dokkum & Franx 1996; Lilly & Carollo 2016)
 - High Σ_{1kpc} quenched earlier
 - GV: env. quenching kicking in now
- Tidal stripping decreases M_{*}
 - Stripping happens after start of quenching

Tidal Stripping?

Tidal stripping is consistent with several other observations

Why is Σ_{1kpc} for quenched galaxies always high?

Something causes $\Sigma_{1 \text{kpc}}$ to increase, but only after the start of quenching

- Ram pressure compression
- Tidal compression
- Tidally triggered instability
- Harassment

 $\Sigma_{1 \text{kpc}}$ never increases for individual satellites

"Progenitor bias" (van Dokkum & Franx 1996; Lilly & Carollo 2016)

- High $\Sigma_{1 \text{kpc}}$ quenched earlier
- GV: env. quenching kicking in now
- Tidal stripping decreases M_{*}
 - Stripping happens after start of quenching

Can in principle distinguish between these two types of scenarios:

- study the stellar populations in recently quenched/quenching satellites
- How much of the inner stars formed recently?

Stay tuned! Test underway with MUSE observations of HCG 16!