

Particle acceleration beyond the synchrotron radiation reaction limit in the Crab Nebula

Benoît Cerutti

Center for Integrated Plasma Studies University of Colorado, Boulder, USA.

Collaborators: Gregory Werner (CIPS), Dmitri Uzdensky (CIPS), Mitch Begelman (JILA)

B. Cerutti Processus d'accélération en Astrophysique, 3-5 Oct., 2012, IAP, Paris.

The Crab Nebula seen by the Hubble Space Telescope

- Born after a supernova explosion
- Birth date: 1054 AD
- Distance: 2 2.5 kpc
- Size: ~1 pc

Crab Pulsar:

- Spin period: 33 ms
- Spin decrease: 10^{-12.4} s/s
- Surface magnetic field: ~ 4×10¹² Gauss

• Radius: ~10 km

The classical (simplified) picture of pulsar wind nebulae

[See Review by Kirk et al. 2009]

The Spectral Energy Distribution of the Crab Nebula

The Crab Nebula in the gamma-ray sky

Galactic coordinates

1 year of exposure

The Crab Nebula

Fermi and *Agile* detected short and powerful gammaray flares in the Crab Nebula

Flare 4 days \Rightarrow emitting region size $ct_{flare} \sim 10^{16} cm << Nebula (~0.1 pc)$ Shortest variability timescale ~1 hour. If $t_{flare} = t_{syn} \Rightarrow B \sim few mG >> 200 \mu G$

B. Cerutti

Fermi-LAT image during huge April 2011 flare

© *R. Buehler, Fermi-LAT* B. Cerutti

The Crab Nebula is flaring all the time!

[R. Buehler 2011, Fermi-LAT Coll.]

Spectral variability at high energies

No obvious variability at other wavelength correlated with the flares.
 April 2011 spectrum is NOT a simple power-law

The production of synchrotron emission >100 MeV challenges classical models of acceleration

Synchrotron photon energy: $\varepsilon_{max} = 3/2 \gamma_e^2 \hbar (eB/m_ec) > 100 \text{ MeV}$ $\rightarrow \gamma_{o} m_{o} c^{2} > 10^{15} \text{ eV}$ (B/1 mG), highest-energy particle associated with a specific astrophysical object!

Maximum energy of electrons are limited by radiative losses:

- Accelerating electric force: $f_{acc} = eE$ Radiation reaction force: $f_{rad} = 2/3 r_e^2 \gamma^2 B^2$ $f_{acc} = f_{rad} \rightarrow \gamma_{rad}$

Synchrotron photon energy:
$$\varepsilon_{max} = 3/2 \gamma^2_{rad} \hbar \omega_c = 160 \times (E/B) MeV$$

In classical acceleration mechanisms: E < B (ideal MHD) $\rightarrow \epsilon_{max} < 160 \text{ MeV}$

Possible solution with relativistic Doppler boosting effect: [e.g. Komissarov & Lyutikov 2010, Bednarek & Idec 2011]

$\varepsilon_{\rm max} = D \times 160 {\rm MeV}$

But then $D\approx 3-4$, unlikely in the Crab Nebula (bulk motion < 0.5 c) B. Cerutti [*Hester*+2002]

Abraham-Lorentz-Dirac equation

Equations of motion of a single relativistic electron: [Jackson, 1975]

 u^{μ} : 4-velocity

 $F^{\mu
u}$: External electromagnetic field-strength tensor

 $ds = c dt / \gamma_e$: Relativistic interval

Expression for the radiation reaction force

General expression: [Landau & Lifshitz, 1971]

"Schott" term Recoil due to

Negligible for $\gamma_e >>1$ radiative losses

3-force for $\gamma_e >> 1$:

Continuous drag force

Relativistic Larmor formula: $\mathcal{P}_{rad} = \frac{2}{3}e^2c\left(\frac{du^{\mu}}{ds}\right)\left(\frac{du_{\mu}}{ds}\right)$, depends on g^{μ}

Iterative method:

$$g^{\mu,0}=0 \longrightarrow P_{rad}^{1} \longrightarrow g^{\mu,1} \longrightarrow P_{rad}^{2} \longrightarrow \cdots \longrightarrow g^{\mu,i} \longrightarrow \cdots$$

First order expression:

$$\boldsymbol{P_{\mathrm{rad}}}^{\mathrm{l}} = \frac{2}{3} r_{\mathrm{e}}^{2} c \gamma_{\mathrm{e}}^{2} \left[\left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right)^{2} - \left(\frac{\mathbf{v} \cdot \mathbf{E}}{c} \right)^{2} \right]$$

valid if $\frac{\gamma_e B}{B_o} \ll 1$, where $B_c = m_e^2 c^4 / c^3 \sim 6 \times 10^{16}$ Gauss B. Cerutti

Valid in the Crab Nebula: $\gamma_{\rm e} \sim 10^9$ $B\sim 10^{-3}$ Gauss $\gamma_{\rm e} {\rm B} / {\rm B}_{\rm c} \sim 10^{-11}$

Particle acceleration above the radiation reaction limit could occur at reconnection sites

The reconnecting magnetic field vanishes inside the current layer:

Where could magnetic reconnection operate in the Crab?

Pulsar wind Current sheet (striped wind) [Coroniti 1990]

Polar region
- High magnetic field (Z-pinch)
- Kink unstable [Begelman 1998]
(See also Lyubarsky 2012)
Flares: Analog of Sawtooth crashes
in tokamaks? [Uzdensky + 2011]

© Mizuno et al. 2010

© Kirk et al. 2009

Termination shock Dissipation of the striped wind [Lyubarsky 2003]

© Sironi & Spitkovsky 2011b

© NASA-CXC-SAO F.Seward et al.

Goal

Study particle acceleration **in relativistic collisionless pair plasma reconnection**, and **its radiative signature** for an external observer.

PIC codes

VORPAL

Commercial software developped at the Univ. of Colorado and Tech-X Corporation. *[Nieter & Cary 2004]*

Simus. done by G. R. Werner

B. Cerutti

ZELTRON

Developped from scratch by B.Cerutti at Univ. of Colorado. 2D and 3D relativistic parallel PIC with open MPI.

+ Radiation reaction force!

Initial setup: Relativistic Harris equilibrium

2.5 D & No guide field

<u>Time evolution</u> of reconnection

The layer is **tearing unstable** and breaks up into a chain of magnetic islands separated by secondary reconnection layers

<u>Time evolution</u> of reconnection

Particles are accelerated at X-points along the \pm z-direction, and deflected along the \pm x-directions by the reconnected field B_y

Simulation with the <u>radiation reaction force</u> and <u>ultra-relativistic</u> non-thermal background pairs

No clear evidence of non-thermal particle acceleration.
➔ May require a larger separation of scales (bigger box size?)

Evidence for relativistic Speiser orbits

Sample of 150 particle orbits

A typical high-energy particle orbit

[Cerutti et al., in preparation, 2012]

Comparison with semi-analytical expectations

Test particle simulation steady fields and radiation reaction force.

[see Uzdensky, Cerutti & Begelman, 2011, ApJ Letters] [Kirk, PRL 2004]

Evidence for >160 MeV synchrotron photons!

Total synchrotron flux background particles

[Cerutti et al., in preparation, 2012]

Using the Aitoff projection:

 10^{23}

10⁵

106

@ t = 376 ω_c^{-1}

@ $t = 376 \omega_c^{-1}$

1025

10⁵

106

@ $t = 376 \omega_c^{-1}$

 10^{23}

10

10⁵

106

B. Cerutti

@ $t = 376 \omega_c^{-1}$

@ $t = 376 \omega_c^{-1}$

@ $t = 376 \omega_c^{-1}$

The high-energy radiation flux is highly anisotropic

B. Cerutti

High-energy lightcurves

Reconnection naturally generates bright, ultra-rapid, symmetric sub-flares of radiation

[Cerutti et al., ApJLetters, 2012b]

High-energy particle anisotropy

The beam of high-energy particles sweeps across the line of sight intermittently: bright symmetric flares.

Summary and future directions

We interpret the Crab flares as a **reconnection event**. Relativistic pair plasma reconnection can explain:

- Ultra-rapid time variability of the flux (sweeping beam).
- **Energetics** of the flares (**strong beaming** of the high-energy radiation).
- Synchrotron radiation >160 MeV (particle acceleration beyond the radiation reaction limit inside the layer where E>B)

Futures directions:

- 3D with guide field: Effect of the kink instability on anisotropy? Preliminary: not much at early times.

- Application to other flaring astrophysical objects: e.g. Active Galactic Nucleii, Gamma-ray Bursts...
- Non-thermal particle acceleration with reconnection?!