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« Solar system shocks. Bow Shock:
continuously observed shock wave with
different geometric properties

e Diffuse ion population
 Gyro-resonance acceleration (GRA)

« GRA with magnetic field inhomogeneity
« Experimental properties of GRA
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Solar system shocks

non-relativistic relativistic SNR - supernova remnant ¢ |

.1 AGN - active galactic nucleus 5J'
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Mean free path due to Coulomb collisions is: z
*1 AU in the Solar system D

*1000 pc in Supernova Remnants E

*10° pc in galaxy clusters b

Mean free path >> all scales of interest. Shocks must be mediated 7
without any collisions but through interaction with collectlve self- g
consistent fields o



The Earth
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SLAMS in the vicinity of the Earth
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Fig. 1. Magnetic field magnitude and associated ion pres- 2
sure signatures as viewed in the AMPTE/UKS spacecraft B
frame of reference of two SLAMS identified by Schwartz et Z
al. (1992, c. f. Figures 6, 7, 14 and 15 which study the field 7
structure and plasma signatures for these two events]. 5

Giacalone, Schwartz and Burgess, 1993 o



SLAMS In the vicinity of the Earth
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Fig. 4. Results of the superimposed epoch analysis of the
spacecraft frame pressure for sub-populations of (A) 1.4-
9.3 keV, (B) 5.3-11.8 and (C) 11.8-20 keV ions.

Giacalone, Schwartz and Burgess, 1993
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Diffuse ions upstream of Earth’s bow shock

Diffusive ions are nearly isotropic, energetic
(~150 keV) ions observed upstream of the Bow
Shock under quasi-parallel conditions

Strong correlation known between the diffusive
lons and upstream wave filed intensity

astrophysique, Qctober 3-5, 2012

Suggestive of 1st order Fermi acceleration. In this
case Fermi picture predicts N(E) falls exponential
with distance from the shock L(E)~E
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Cluster can directly observe this gradient
7
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Diffuse ions upstream of Earth’s bow shock

18 February 2003
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The gradients in 4 energy channels ranging from 10 to 32 keV energy e
channels decrease exponentially with distance. The e-folding distance of v)
the gradients depends approximately linearly on energy and increases 4
from 0.5 Re at 11 keV to 2.8 Re at 27 keV (from Kis et alg 2004). S



Gyro-Surfing acceleration

The idea of gyro-surfing acceleration was proposed by
Kuramitsu and Krasnoselskikh PRL2005.
Three factors are necessary:

1. Circularly polarized wave

2. Particle polulation wich satisfy the resonance
condition with the wave

3. Electrostatic field along the background magnetic field

All these three factors are usual for the vicinity of the Earth
guasi-parallel Bow Shock. This allows to expect observation
of the effective energy transport to the transverse component
of the ion kinetic energy

Processus Q'acceleration en astrophysique, Qctober 3-5, 2012



yro-resonant mecnanism oOr particie

acceleration

Circular electromagnetic wave: B —Bﬁ(d)) and E,=
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Effect of Electrostatic field
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2 mck

Particles gain energy in
the system with E <0

Lorentz force can be |B, |= const %: 0
compensated by 0 > dt
electrostatic field (see 9
Kuramitsu & Krasnoselskik dv, __4 |B25 l' B, |
2005 PRL) dt m°c°k

_ m mc
Trajectory in plane perpendicular

Growth of energy , the hackground magnetic field

|:b]| l | 4 |

717 71 -5 W]
40 0 40 Vy (ch)
X (chp)

1.1
(Kuramitsu & Krasnoselskikh 2005 PRL)

E B =
$ [b:q P_Cl| 5|V¢Sin¢0'§

N

sin ¢y

siqu

n astrophy

&

Processus d'acceleration



Particle trajectory in the wave

Particle trajectory and energy
dynamics in a wave field with
moving boundary
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Effect of the Magnetic field

inhomcgeneity

Lorentz force can be ¢ = kz —k W (x)dx -t 51
compensated by inhomogeneity o
of magnetic field v, =@/ k= const Q,, =qB,, /mc

el 3-5,
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Particle trajectories
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resonant particles are considered
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Energy distribution

All ensemble with initial energy v, is
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The upstream ion event on 18th of

February, 2003

-_—vev.......... The angle between the local
magnetic field and the bow shock %

]

normal direction. The black arrow J)
marks the time period of the s
detailed analysis when the seed

)

. . 7
particle population was recorded. o
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Magnetic field measurements

velocity value about 490 km/sec in !
a frame of Cluster spacecraft. 7

10)
V,=80-100 km/sec )

D
wave frequency in a frame of the 9
solar wind is equal to 0.2 Hz S
the wavelength 350-490 km. =]

SI0

The resonance conditions for ions
trapping by the wave field:
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Wave polarization
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The hodograms of the three wave packets observed by Cluster
spacecraft in the MVAB reference frame. It can be clearly seen that all
three wave packets consist of circularly polarized transversal waves.
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Particle fluxes

wave packages
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The magnetic data
recorded by SC3; the
first two wave packets
are highlighted (red).
Attached to this upper
panel there are two ion
distributions in velocity
space taken at the
times by SC3 when of
the two first wave
packets were observed.=
The two ion
distributions presents
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Particle fluxes

steepening of upstream waves (SLAMS) the magnetic field .
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Electric field on the boundary
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Conclusions

In spite of the differences between astrophysical and Earth bow
shocks there are several important and crucial for the acceleration
problem questions, which can be identified and studied in details
by in situ observation of physical processes involved into
acceleration in the solar system

We provide observational evidence of the formation of the so-
called seed particles in the foreshock region for the first time. Our
results based on multipoint simultaneous measurements in front of
the Earth’s quasi-parallel bow shock show that the gyroresonant
surfing acceleration on the magnetic field inhomogeneity is
iIndeed an effective ion acceleration mechanism capable of
producing the seed ions which is an essential element of the
diffusive shock acceleration

23
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