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The idea of components

Noisy linear spatial mixture : X(~r) = AS(~r) +N(~r)


X1(~r)
X2(~r)
X3(~r)
X4(~r)

 = =


a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43

 × +


n1(~r)
n2(~r)
n3(~r)
n4(~r)





Related work

Blind and non blind

– Hobson 1998, Stolyarov et al 2001, Maximum entropy

– Bouchet et al 1999, Wiener filter

– Tegmark et al 2000

– Baccigalupi 2000

– Maino et al 2001

– Snoussi et al 2001

– Maino et al, 2003. astro-ph/0303657 (FastICA on COBE-DMR)



Outline

– Component separation :

exploiting diversity to recover components (sources) from mixtures.

– Blind separation :

exploiting statistical independence(s).

– Component separation versus spectrum separation : SMICA.

– What works when, and why.

And why that which should not work may still work.

– Results on Archeops and W-MAP data (Guillaume Patanchon)



Blink’n’Scan (something non cosmic)

X = AS +N

+=



58 −45 66

4 94 29

−97 −13 6

−90 37 −12

−78 −56 18

−98 −11 11

−88 −40 21

−90 36 −4

−57 −71 33

−45 84 −21



×



Component separation : get S from X

Model X = AS + N : Linear mixtures AS of independent (S ∼ PS =
∏
iPSi)

components, observed in Gaussian noise (N ∼ N (0, RN)).

The most likely S once X is observed —the maximum a posteriori (MAP)

estimate— is

Ŝ(X) = argmax
S

P (S|X) = argmin
S

(X −AS)†R−1
N (X −AS) +

∑
i

φi(Si)

where φi(·) = −2 logPSi(·) depends on the (hypothetical) component pdf.
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− The MAP is linear : Ŝ(X) = (A†R−1
N A+R−1

S )−1A†R−1
N X

− It is ‘biased’, unlike Ŝ?(X) = (A†R−1
N A)−1A†R−1

N X = S + noise.

− It is also the minimizer of E(S − f(X))2 : Wiener filter.
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− The MAP is linear : Ŝ(X) = (A†R−1
N A+R−1

S )−1A†R−1
N X

− It is ‘biased’, unlike Ŝ?(X) = (A†R−1
N A)−1A†R−1

N X = S + noise.

− It is also the minimizer of E(S − f(X))2 : Wiener filter.

• Non Gaussian comp’s : φi(Si) = S2
i /(S

2
i + σ2

i ) for instance, for heavy tails.

− Other functions φi for other priors. MAP is MEM.

− The MAP estimate Ŝ(X) is non linear for non Gaussian priors.



Two issues

In order to separate components (invert the noisy mixture X = AS +N), one

may use, for instance, the Gaussian MAP (a.k.a. Gaussian Wiener filter)
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or even smarter filters : non Gaussian MAP, non Gaussian Wiener filters.

1 • But even the simple Wiener filter requires knowing the mixture coefficients

(the A matrix) and the power RS, RN of components and noise . . .

2 • For noisy mixtures, there can be no clean maps of separated components

(Would you like some noise in your contaminants ? )

so spectral estimation from separated maps still face the issue of removing

‘stuff’ (noise and/or signal) from the spectral estimates. Ŝ(AS) 6= S.



Two routes to component spectra

Component separation :

Xi(θ, φ)
1→ Sj(l,m)

2→ Ĉj(l) = 〈Sj(l,m)2〉l,m∈bin(l)

1 : Component separation and spherical harmonic transform.

2 : Non parametric (auto)-spectral estimation.
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Xi(θ, φ)
1→ Sj(l,m)

2→ Ĉj(l) = 〈Sj(l,m)2〉l,m∈bin(l)

1 : Component separation and spherical harmonic transform.

2 : Non parametric (auto)-spectral estimation.

Spectrum estimation :

Xi(θ, φ)
1→ R̂ij(l) = 〈Xi(l,m)Xj(l,m)〉l,m∈bin(l)

2→ Ĉj(l)

1 : Non parametric, cross- and auto-spectral estimation.

2 : Spectrum separation.

3 : Optionally, component separation (a by product, now easy).



Spectral matrices

The data-based auto- and cross-spectra R̂ij(l) = 〈Xi(l,m)Xj(l,m)〉l,m∈bin(l)

are collected in a sample spectral matrix R̂(l).

It is the natural estimate of the spectral matrix R(l) at mode l.

According to the model X = AS +N , it is structured as R11(l) R12(l) R13(l)
R21(l) R22(l) R23(l)
R31(l) R32(l) R33(l)

 =

 a11 a12

a21 a22

a31 a32

·[ C1(l) 0
0 C2(l)

]
·

 a11 a12

a21 a22

a31 a32

†+
 σ2

1(l) 0 0
0 σ2

2(l) 0
0 0 σ2

3(l)


for m = 3 detectors, n = 2 components and spatially uncorrelated noise. Here,

Ci(l) is the harmonic spectrum of the ith component.
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
for m = 3 detectors, n = 2 components and spatially uncorrelated noise. Here,

Ci(l) is the harmonic spectrum of the ith component.

The left hand side is estimated from the data by R̂(l).

The right hand side can be uniquely fitted to it,

by adjusting any chosen subset of parameters
{
aij, Ci(l), σ

2
j (l)

}
.

SMICA : Spectral matching independent component analysis



A measure of spectral mismatch

Plan : Estimate all unknown parameters by spectral matching.

Specifically : The unknown parameters θ = (C1(l), . . .) are found by minimizing

φ(θ) =
L∑
l=1

nl K
(
R̂l|Rl(θ)

)
where K(·|·) is the ‘Kullback divergence’ between positive matrices

K(R1|R2) = trace(R1R
−1
2 )− log det(R1R

−1
2 )−m.



A measure of spectral mismatch

Plan : Estimate all unknown parameters by spectral matching.

Specifically : The unknown parameters θ = (C1(l), . . .) are found by minimizing

φ(θ) =
L∑
l=1

nl K
(
R̂l|Rl(θ)

)
where K(·|·) is the ‘Kullback divergence’ between positive matrices

K(R1|R2) = trace(R1R
−1
2 )− log det(R1R

−1
2 )−m.

Why ? Because −φ(θ) is the Whittle approximation to the log-likelihood.

Meaning : Fisher optimality for Gaussian stationary components.



What else ?

What about these non Gaussian ICA methods ?



Independent component analysis X = AS +N

– Separation : Given A (plus component properties), build S from X.

– Blind analysis : find the mixing A in the first place.

+= A ×

Ideas for blind analysis :

– Make rows of S mutually independent

– Make each row of S simple

– Make each row of S sparse

– Make each row of S neguentropic

– Do not constrain A at all. . .

– . . . or do it, if so inclined.

– . . .

The general idea : Select a simple statistical model for each component and

look at the maximum likelihood solution.



Three points of view on a random ( ? ? ?) process

A sequence

Marginal probability density Spectral energy density Temporal energy density

Same marginal Same spectrum Same variance profile

All models are wrong, but some are useful —George Box



Independences

The invertible linear transform making the entries of Y (t) = BX(t) are ‘as

independent as possible’ is such that, for any pair i 6= j

1

T

T∑
t=1

ψi(Yi(t))Yj(t) = 0

for i.i.d. sequences and ψi = −r′i/ri with ri the pdf of Yi(t) (for any t) or



Independences

The invertible linear transform making the entries of Y (t) = BX(t) are ‘as

independent as possible’ is such that, for any pair i 6= j

1

T

T∑
t=1

ψi(Yi(t))Yj(t) = 0

for i.i.d. sequences and ψi = −r′i/ri with ri the pdf of Yi(t) (for any t) or

1

T

T∑
t=1

Yi(t)

a2i (t)
Yj(t) = 0

for modulated Gaussian i.i.d. sequences and ai(t) is the amplitude of Yi(t) or



Independences

The invertible linear transform making the entries of Y (t) = BX(t) are ‘as

independent as possible’ is such that, for any pair i 6= j

1

T

T∑
t=1

ψi(Yi(t))Yj(t) = 0

for i.i.d. sequences and ψi = −r′i/ri with ri the pdf of Yi(t) (for any t) or

1

T

T∑
t=1

Yi(t)

a2i (t)
Yj(t) = 0

for modulated Gaussian i.i.d. sequences and ai(t) is the amplitude of Yi(t) or

1

T

T∑
t=1

Ỹi(t)

Pi(t/T )
Ỹj(t) = 0

for Gaussian stationary sequences where Ỹi is the DFT of Yi and Pi(ν) is its

power spectrum.



Some experimental results

Mostly conducted by Guillaume Patanchon.

• First release of Archeops data.

Several components.

• Second release of Archeops data.

Checking for inter-calibration, selecting bolometers, goodness of fit, general

feelgood feeling.

• Preliminary W-MAP processing.



Archeops map in the 143 kHz channel



Archeops map in the 217 kHz channel



Separated dust component



Separated CMB component



First ozone component



Second ozone component



Archeops

Sky maps

at 143 and

247 GHz.

(2 out of

15)

CMB ( !)

and dust.

Two ozone

components.



Goodness of Archeops V2 fit

Left : Global spectral mismatch for 1 and 2 components.

Right : Best matching intercalibration.

When the model holds :

2n 〈min
θ
K

(
R̂, R(θ)

)
〉 ≈

1

2
Nbolo(Nbolo + 1)− (Nbolo +Ncomp)



Pairwise mismatch for Archeops V2
With 1 component (+ noise) With 2 components (+ noise)









Concluding comments

SMICA

– Flexible

– Maximum likelihood

– Built-in measure of fit

– Easy (manageable) model of correlated components

– Huge data compression

– Easy beam correction

– Optimal for Gaussian stationary, still consistent otherwise.

– Poor handling of highly non Gaussian comp’s.



About MEM

– Maximum entropy method (a misnomer, IMHO)

– Uses simple non Gaussian models for (some) components.

– Reduces to the (linear) Wiener filter for Gaussian models

– Tremendous information in the non Gaussian part of the data. . .

– . . . but poorly expressed in the frequency domain


