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Estimating the Power Spectrum of
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 Philosophy — What is Cl?
 Bayesian/Frequentist

 History
 Practice

 — Methods

 Future?



What is Cl?

 Sky average

 “Ergodic” (cosmic) average

 Variance of a Gaussian distribution

 Variance of some other distribution
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CMB Data

 data = signal + noise
 dp = sp + np  (p=pixel number), correlations:

 Polarization: Spp’ is linear combination of Cl
XX’

 Task: measure Cl (or bandpowers — Bond)
and preserve all sky information for
parameter estimation
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Probability distributions

 Likelihood function P(dp | Cl Npp’ I)
 probability density of data data given signal and noise variances

(& information I)

 Frequentist:
 underlying physical mechanism responsible for “long-run”

frequency distribution of data
 Bayesian:

 encodes information I (which may be that same physical
mechanism)

 e.g., Gaussian Signal + Noise:
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Frequentist methods

 Devise an “estimator” El[d] such that El[d]~(input Cl)
 e.g., unbiased:

 depends on likelihood as function of varying data for fixed
(fiducial) Cl

 in practice, “quadratic estimators”
 El[d] = Ql[d] = dTQld - bl

   〈dTQld〉=Tr[(S+N)Ql]=∑ClMll’FlBl
2+bl in simple Gaussian case
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Frequentist Methods (II)

 Quadratic form:
 El[d] = Ql[d] = dTQld - bl
   〈dTQld〉=Tr[(S+N)Ql]=∑ClMll’FlBl

2+bl in simple
Gaussian case

 estimate is El[d] ± σl[d]
 with σl from diagonal elements of

Vll’[d] = 〈El El’〉-〈El 〉〈El’〉
 How do we use El ± σl for parameter estimation?

 full frequentist parameter estimation hard/ill-defined
(Abroe et al, Schaefer & Stark)



Bayesian methods

 Characterize likelihood function P(dp | Cl Npp’ I) as
function of Cl for fixed (observed) data.

 depends on use of estimate:
 for actual “Cl estimate”:

 assign prior P(Cl|I), use Bayes’s theorem:

 report, e.g., mean, variance

 for further parameter estimation, need full shape of L(Cl )=
P(dp|ClNI) for use in Bayes’s theorem estimation of parameters
 Cl prior doesn’t enter — “hierarchical model”
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Probabilities and Entropy

 Bayesian: probabilities are primarily about
information, and only secondarily about frequency
 How do we assign a distribution based on our

information?

 Entropy — maximize subject to constraints
 Gaussian has maximum entropy for given covariance
 Uncorrelated Gaussian has maximum entropy for given

variances (diagonal elements, σi
2)

 e.g., σi
2 is marginalized variance irresp. of off-diag terms

 Gaussianity is conservative choice!



Bayesian methods:
hierarchical models

 Timestream (dt)
⇒ Map (Tp ~ dp)
⇒ Spectrum (Cl ~ dl)
⇒ cosmology

 without loss of information?

 P(Cosmology|dtNtt’) = P(Cosmology|dp,Npp’)
≈ P(Cosmology|dlNll’,xl)

 assume that we can calculate P(Cosmology|dlNll’,xl) even
from non-Bayes estimators

nb. Wiener filter from P(dp|Cl)
 e.g., post hoc polzn separation, prediction



Bayesian/Frequentist
Correspondance

 Why do both methods seem to work?
 frequentist mean ~ likelihood maximum

frequentist variance ~ likelihood curvature
 Correspondance is exact for

 linear gaussian models (mapmaking)
 variance estimation with no correlations and “iid” noise —

simple version of Cl problem
 e.g., all sky, uniform noise
 likelihood only function of dlm

2

 breaks down in realistic case of correlations, finite sky, varying noise

 “asymptotic limit”
 ~ high l iff noise correlations not “too strong”



Expected errors

 Knox 95, Hobson & Magueijo 96
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Case study

 Toy version of a single l (m = -l, …, +l)
 dm=am+nm 〈amam’〉=Cδmm’,  〈nmnm’〉=Nmm’

 Naïve Quadratic estimator

 Likelihood Maximum, curvature
 Posterior mean, variance

[with “Jefferys Prior” P(C|I) ∝ 1/C)]€ 
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toy model — inhomogeneous noise

inhomogeneous noise
l~150



toy model — non-Gaussian signal

  

non-Gaussian signal

 

low noise high noise



History

 Galaxy surveys — correlation functions [e.g., Peebles],
P(k) [e.g., Feldman, Kaiser & Peacock]

 DMR
 C(θ) estimation; Boughn-Cottingham; (Qrms-PS,n)
 Likelihoods

 Seljak & Bertschinger
 Tegmark & Bunn
 Bond — forecasts, likelihoods and esp. “bandpowers”
 Gorski

 CMB upper limits (GACF — Gaussian autocorrelation
function); first post-DMR experiments
 Bandpowers: e.g., Crittenden, Bond et al (SP); Netterfield (SK)

 param. forecasts — Jungman et al; Bond, Efstathiou,
Tegmark



“Modern” methods

 “Optimal Quadratic” (Tegmark)
 Newton-Raphson Iteration to Likelihood Max

= Iterated optimal quadratic [BJK 98]
 MADCAP (Borrill &c)
 Interferometers

(e.g. VSA: Maisinger, Hobson, et al)

 OSH — Monte Carlo methods
 pseudo-Cl methods

 MASTER
 Gabor transforms

 SPICE
 WMAP



Bayesian methods:
MADCAP/MADspec

 (quasi-)Newton-Raphson iteration to
Likelihood maximum

 Algorithm driven by matrix
manipulation (iterated quadratic):

 Fisher = approx. Likelihood curvature

 full polarization: signal matrix Sxx’
pp’

 Arbitrary (precomputed) noise
spectrum

 Arbitrary linear filters
 Stompor et al; Jaffe et al; Slosar et al

 O(N3) operations naïvely (matrix
manipulations), speedup to ~O(N2)
for spectrum estimates (potentially
large prefactor)
 Fully parallelized (MPI, SCALAPACK)

 do calculations in the natural basis

 no explicit need for full Npp’ matrix in
pixel basis (just noise spectrum or
autocorrelation)

 e.g., MAXIMA,
BOOMERANG
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Monte Carlo methods:
MASTER, SPICE &c

 MASTER: quadratic pseudo-Cl estimate

(Hivon et al)
 e.g., B98

takes advantage of fast SHT

 SPICE: transform of correlation function estimate
(Szapudi et al; Fosalba talk)

 Gabor transform: (apodized) quadratic
+ pseudo-ML for inverting Kernel

(Hansen et al)

 Issues: filters, weights, noise estimation/iteration, input
maps — optimal or naïve?
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Hybrid Methods:
FASTER

 Key insight: MASTER covariance formalism allows
calculation of diagonal part of pseudo-alm covariance —
use for likelihood maximization
 (nb. this has maximum entropy and so is conservative!)
 Diagonal likelihood:

 MC evaluation of means;
 Newton-Raphson iteration towards maximum
 Easy calculation of Likelihood shape parameters
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(related suggestions from Delabrouille et al)



WMAP:
Cross-correlations

 Take advantage of uncorrelated noise between
different detectors

Monte Carlo method — without need for noise
bias removal

 (also Archeops—XSPECT; Polenta et al)
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Method Miscellenea

 Efstathiou: Bayes/Frequentist discrepency
potentially largest at low l — Bayes for low l, MC
for high l

 Knox/Dore/Peel — hierarchical quadratic
estimator

 Ring/Harmonic Methods
 Wandelt et al — full pseudo-Cl likelihood
 Challinor, van Leeuwen et al

 MCMC search for Cl (Wandelt)



Comparisons

B98:| Ruhl et al 2003 FASTER:| Contaldi et al 2004

FASTER
MASTER
(MC avg)



Timing and efficiency

time
optimal/bayes: Np

3

monte carlo: N1.5

prefactors: NMC, Nbin, …

Space
TOI: 50 GB/yr @200Hz
maps: 384 Mb @ Nside=2048

noise matrix: N2/2 entries
~9 petabytes @ Nside=2048

SPICE: Szapudi et al

resource management will
become an issue even for
cheapest methods



Polarization

 Formally the same problem:
dp⇒(i,q,u)p = di,p = dq

 〈dqdq’〉=Nqq’+Sqq’

low S/N, large systematics
complicated correlations:

Nqq’:  pixel differences
Sqq’=Sij

qq’ : linearly dependent
on all of Cl

XX’ (X=T,E,B)

e.g., Seljak, Zaldarriaga;
Kamionkowski, Kosowsky, Stebbins;
&c.

E/B leakage (= T/E/B correlation)
 in principle, don’t need extra

separation step if full
correlations/distributions is known

 in practice, E/B characteristics impose
specific correlation structure —
easier to “separate”

 e.g., Lewis talk — separate at map or
Cl?

 Wiener filter for map from Cl.



Interferometers

 ~Direct measurement of binned spherical
harmonic components
 great simplification: noise and signal correlations simple

in the same basis

 CAT: bandpower likelihoods
 DASI, Hobson & Maisinger/VSA:

Likelihood/Bayesian methods



Parameter estimation from Cl

P(d|θI) = P(d|Cl[θ]) [Bayes]
explore w/ grids or MCMC

(Knox et al; CosmoMC;
Dunkley et al; WMAP)

no freq. alternative?
 shape of likelihood L(Cl).
BJK 00 &c: offset lognormal

distribution/eq. var. approx.
WMAP approx — but e.g.,

Slosar et al
Potentially breaks down

 in tails (should be power
law ~ 1/Cn)

 in presence of
correlations

Bandpowers: window & filter fns
(Knox)

Slosar et al 2004

FASTER: Contaldi et al 04



 l=2,3: only 2.7σ (Bayes model
comparison; see Liddle talk)
 quadrupole, octopole

alignment?
 other “anomolies”

 l~25; first peak; C7
TE

Slosar et al 04

Niarchou et al 04

The WMAP quadrupole



The future of Cl

 Extensions:
 Cl does assume isotropy

 Propagating noise
timestream ⇒ maps ⇒ Cl ⇒ cosmology

 statistics and systematics
 MADCAP: use N(t-t’); Stompor & White; Ashdown et al: rings (Planck)

 Asymmetric beams/beam errors
 Combining results — after the fact or before
 Noise estimation and errors
 Details: likelihood shape; window functions;

beam/calibration error,…



Conclusions

 a dozen methods out there
 Bayes/freq, Monte Carlo, correlation function, apodization, …
 all approximations to ‘optimal’ Bayesian method
 all agree (in simple cases)

 for Precision Cosmology
 compare with exact/optimal in more complicated cases
 requires wider tests & comparisons — correlations, non-

Gaussianity, etc.


