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Motivation

Figure 1: Distribution of Dark Matter at z = 0 according to
the Millennium Run simulation (source: V. Springel et al. ’05)

Short History of Structure Formation in the Universe:

• initially small and smooth primordial density perturbations are am-
plified through gravitational instability and form Large Scale Struc-
ture (LSS)

• primordial fluctuations were distributed according to homogeneous
Gaussian random processes

• for Gaussian random fields all statistical information is encoded in
the power spectrum!

• during most of the evolution inhomogeneities can be treated as linear
perturbations (as for the CMB analysis)

• but: as perturbations grow and become non-linear, different modes
of the density field become coupled

• this leads to non-Gaussian signatures in the matter density field

• since weak lensing probes low redshift regime and intermediate scales
Non-Gaussianities must be taken into account!

Why do we consider the Covariance?

Covariance of statistical quantity x is defined as:

C(xi, xj) ≡ 〈〈xi〉 − xi〉〈〈xj〉 − xj〉 , (1)

where 〈.〉 denotes the ensemble average of x.

• gives error on the quantity x (diagonal elements) and amount of
correlation between the different xi (off-diagonal elements)

• generates in case of the convergence power spectrum Pκ(l) non-
linear, higher-order correlations

• is essential for the likelihood and Fisher matrix analysis of cosmo-
logical parameter estimation

• better understanding important since Gaussian assumption is used
often to estimate covariances

Covariance Matrix for Weak Lensing
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1
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where A is the survey volume and As(li) the shell area. The covariance
is decomposed into a Gaussian and a non-Gaussian part. Pκ(li) and
Tκ(li, lj) are the convergence power- and trispectrum defined as:
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, (3)

Tκ(li, lj) ≡

∫

d2l1
As(li)

∫

d2l2
As(lj)

Tκ(l1,−l1, l2,−l2) , (4)

where the weight function W (w) sets the geometry of the background
sources (see [1, 3, 6] for more details).

The Halo Model (HM)

Motivation:

• need to model non-linear, higher-order correlation functions

• Perturbation Theory description of gravitational clustering breaks
down around l ≃ 100

•N-Body simulations of LSS are computationally very costly

•HM provides simple description for semi-analytic computation of the
power- and trispectrum (see Cooray & Sheth [4] for more details)
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Figure 2: The convergence Power Spectrum Pκ(l) as generated
with the HM. Perturbation theory breaks down around l ≃ 100.
The Power Spectrum splits into two regimes: The 1-halo term
which is dominant on small scales and the 2-halo term which is
due to the spatial distribution of halos on large scales.

Ingredients:

• general idea: Dark Matter is distributed in spherically symmetric
halos

• physics is split into two regimes:

– small scales: spherical collapse model → halo profile

– large scales: Perturbation Theory → spatial distribution of halos

• halo abundance (Sheth and Tormen mass function)

• halo clustering (Peak-Background-Split → halo bias)

• density profile of the halo according to universal profile (NFW)

• concentration distribution as in Bullock et al. [2]
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Figure 3: Convergence Trispectrum in the HM description. On
small scales the 1-halo term dominates (green line).

Implementation:

• for the Halo Model we use our own implementation in C with the
GSL-Libary for numerical calculations and the ingredients as sum-
merized above

• since the 1-halo term is dominant on small scales, we use the approx-
imation Tκ(li, lj) ≈ T1h(li, lj) in eq. (2) for analyzing the covariance
matrix

Comparison with VIRGO-Simulations

For our work we use the N-body simulations of the VIRGO-
collaboration published by Jenkins et al. (see [5]) . The set of cos-
mological parameters used for the comparison with the halo model is:

Ωm ΩΛ h Γ σ8 Lbox/h
−1 Mpc Npar mpar/M⊙

0.30 0.70 0.7 0.21 0.9 141.3 2563 1.4 ×1010

From the simulations we use 200 realizations with a field view of
0.5◦ × 0.5◦ and consider 30 bins of width ∆l ≃ 720 starting at
l ≃ 720.

Figure 4: Covariance from the Halo Model with a Non-Gaussian
contribution from the 1-halo term

Figure 5: Covariance from the Virgo Simulation [5]

Preliminary Results and Outlook

• the HM reproduces the shape of the Virgo-simulations accurately

• on large scales the HM differs around 50% from the simulations

• on small scales both the HM description and the N-body simulation
break down

•we plan to compare our model against N-body simulations for smaller
bin width

•HM description of the trispectrum needs to be tested against simu-
lations
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