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FIGURE 1: Distribution of Dark Matter at z = 0 according to
the Millennium Run simulation (source: V. Springel et al. "05)

Short History of Structure Formation in the Universe:

e initially small and smooth primordial density perturbations are am-
plified through gravitational instability and form Large Scale Struc-

ture (LSS)

e primordial fluctuations were distributed according to homogeneous
Gaussian random processes

e for Gaussian random fields all statistical information is encoded in
the power spectrum!

e during most of the evolution inhomogeneities can be treated as linear
perturbations (as for the CMB analysis)

e but: as perturbations grow and become non-linear, different modes
of the density field become coupled

e this leads to non-Gaussian signatures in the matter density field

e since weak lensing probes low redshift regime and intermediate scales
Non-Gaussianities must be taken into account!

Why do we consider the Covariance?

Covariance of statistical quantity x is defined as:
Clwi,xj) = (@i) — @) (@) — 2j) (1)

where (.) denotes the ensemble average of x.

e gives error on the quantity x (diagonal elements) and amount of
correlation between the different x; (off-diagonal elements)

e generates in case of the convergence power spectrum Py (l) non-
linear, higher-order correlations

e is essential for the likelihood and Fisher matrix analysis of cosmo-
logical parameter estimation

e better understanding important since Gaussian assumption is used
often to estimate covariances

Covariance Matrix for Weak Lensing
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where A is the survey volume and Ag((;) the shell area. The covariance
is decomposed into a Gaussian and a non-Gaussian part. Pk(l;) and
Tx(l;,1;) are the convergence power- and trispectrum defined as:
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where the weight function W (w) sets the geometry of the background
sources (see |1, 3, 6] for more details).

Motivation:

e need to model non-linear, higher-order correlation functions

e Perturbation Theory description of gravitational clustering breaks
down around [ ~ 100

e N-Body simulations of LSS are computationally very costly

e HM provides simple description for semi-analytic computation of the
power- and trispectrum (see Cooray & Sheth [4] for more details)
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FIGURE 2: The convergence Power Spectrum Py(l) as generated
with the HM. Perturbation theory breaks down around [ ~ 100.
The Power Spectrum splits into two regimes: The 1-halo term
which is dominant on small scales and the 2-halo term which is
due to the spatial distribution of halos on large scales.

Ingredients:

e general idea: Dark Matter is distributed in spherically symmetric
halos

e physics is split into two regimes:
—small scales: spherical collapse model — halo profile
— large scales: Perturbation Theory — spatial distribution of halos
e halo abundance (Sheth and Tormen mass function)
e halo clustering (Peak-Background-Split — halo bias)
e density profile of the halo according to universal profile (NFW)

e concentration distribution as in Bullock et al. |2]
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FIGURE 3: Convergence Trispectrum in the HM description. On
small scales the 1-halo term dominates (green line).

Implementation:

e for the Halo Model we use our own implementation in C with the
GSL-Libary for numerical calculations and the ingredients as sum-
merized above

e since the 1-halo term is dominant on small scales, we use the approx-
imation Ty(l;, 1) =~ Tw(l;, [;) in eq. (2) for analyzing the covariance
matrix

For our work we use the N-body simulations of the VIRGO-
collaboration published by Jenkins et al. (see [5]) . The set of cos-
mological parameters used for the comparison with the halo model is:

Qm | Qx| h | T |og Lbox/h_1 Mpc| Ny | Mya/Me
0.3010.7010.710.21 0.9 141.3 2563]1.4 %1010

From the simulations we use 200 realizations with a field view of
0.5° x 0.5° and consider 30 bins of width Al ~ 720 starting at
[ ~ T720.
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FIGURE 4: Covariance from the Halo Model with a Non-Gaussian
contribution from the 1-halo term
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FIGURE 5: Covariance from the Virgo Simulation [5]

Preliminary Results and Outlook

e the HM reproduces the shape of the Virgo-simulations accurately

e on large scales the HM differs around 50% from the simulations

e on small scales both the HM description and the N-body simulation
break down

e we plan to compare our model against N-body simulations for smaller
bin width

e HM description of the trispectrum needs to be tested against simu-
lations
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