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Introduction

• Why shall we test general relativity on astrophysical 
and cosmological scales

• What should we test?

• Dark matter and lensing

• Cosmological tests

• Conclusions

Bernard:

• Do you think black-holes can couple differently to gravity?
• Do you think dark matter can be a fermionic condensate?
• MOND vs DM (recurent and oscillating topic!)



Introduction

See JPU, astro-ph/0605313

Goal: remind the hypothesis used in the interpretation of
the cosmological data



Interpretation of cosmological data

The interpretation of the dynamics of the universe and its
large scale structure relies on the hypothesis that gravity is 
well described by General Relativity

Galaxy rotation curves

Acceleration of the cosmic expansion

Introduction of Dark Matter
Einsteinian interpretation
Most of the time Newtonian interpretation

Introduction of Dark Energy
Einsteinian interpretation
But more important Friedmanian interpretation



Dynamics of the universe

The standard cosmological model lies on 3 hypothesis:

H1- Gravity is well described by general relativity
H2- Copernican Principle

On large scales the universe is homogeneous and isotropic

Consequences:
1- The dynamics of the universe reduces to 

the one of the scale factor
2- It is dictated by the Friedmann equations

a
ä = à 3

4ùG(ú+ 3P)

3 H2 + a2
K

ð ñ
= 8ùGú

H3- Ordinary matter (standard model fields)

Consequences:
3- On cosmological scales: pressureless +radiation
4- The dynamics of the expansion is dictated by

H2(z)/H2
0 = Ω

0
m(1 + z)3 + Ω0

r(1 + z)4 + Ω0
K(1 + z)2

Ω ñ 3H2

8ùGú



Is this dynamics compatible with observations?

Independently of any theory (H1, H3), the Copernican principle 
implies that the geometry of the universe reduces to a(t).

so that

Hubble diagram gives
- H0 at small z
- q0

Supernovae data (1998+) show

The expansion is now
accelerating

q0 < 0

a(t) = a0 1 +H0(tà t0)à 2
1q0H

2
0(t à t0)

2 + . . .
h i

H2(z)/H2
0 = 1+ (q0 + 1)z+O(z2) q0 = Ωm0/2

1 + z = Eem

Erec = a(t)
a0

Consequences: H2



Λcdm (reference) model

The simplest extension consists in introducing a cosmological constant
- constant energy density
- well defined model and completely predictive

úΛ = 8ùG
Λ = à PΛ

8Ωm0à 6ΩΛ0 ' à 2

Ωm0 +ΩΛ0 ' 1

Ωm0 ø 0.3, ΩΛ0 ø 0.7

S
pergelet al. , astro-ph/0603449Pde = wúde

ΛCDM consistent with all current data

Observationally, very good
Phenomenologically, very simple
But: cosmological constant problem



Understanding the dark sector

1- The Copernican principle does not hold

2- There exists matter such that ρ+3P<0

3- Gravity is not well described by GR on large scales 

The dark sector reflects the fact that the current understanding of
the cosmological data drives us to introduce new degrees of freedom.

Dark matter

Dark energy

MOND and TeVeS alternative

Peebles, astro-ph/0410284



gö÷ þOrdinary
matter

Ex : quintessence, ....

gö÷ þOrdinary
matter

Ex : scalar-tensor, TeVeS ....

gà(i)ö÷Ordinary
matter

Ex : brane induced gravity
multigravity,...

gö÷
Aö

aö
Ex : axion-photon mixing

JPU, Aghanim, Mellier, PRD 05
JPU, GRG 2007

Ordinary
matter

Always need NEW fields

Variety of scenarios

Gravitation = any long range force that cannot be screened



Classical tests of GR

Goal: remind the tests in the Solar system
understand those that can be generalized

See C. Will, gr-qc/0510072



What shall we test?

General relativity is well tested in the Solar system
is our reference theory of gravity

S = 16ùG
1

R à g
√

Rdx+
R
Lm(ψ, gö÷) à g

√
dx

Metric theories of gravity
spacetime is endowed with a symmetric metric
trajectories of free-falling test bodies are geodesic of that metric
in a freely reference frame, the laws of non-gravitational physics are

those written in the language of special relativity

Einstein equivalence principle
universality of free fall
local Lorentz invariance
local position invariance

General relativity is a metric theory of gravity



Tests of GR in the Solar system

Universality of free fall
ñ = 2|a1+a2|

|a1àa2|

Local Lorentz invariance
Michelson-Morley experiments,
isotropy of the speed of light
independence of the speed of light on 

velocity of the source

Local position invariance
gravitational redshift

constants

Z =
÷
î÷ = (1 + ë)

c2
∆Unewt
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Tests of GR in the Solar system

Metric theories are usually tested in the PPN formalism

In its simplest form

If gravity is described by GR then ì = í = 1

This parameters can be constrained, independently of a 
precise theory, from Solar system observations 

ds2 = (à 1 + 2U + 2(ì à í)U2)dt2 + (1 + 2íU)dr2 + r2dΩ2

U =
rc2
GM



Tests of GR in the Solar system

Perihelion shift of Mercury

Nordtvedt effect

Shapiro time delay

Light deflection

îr ø 13.1(4ì à í à 3) cos(ω0 à ωs)t (m)

ît ∝ (1 + í)

∆ò = 2(1 + í)
bc2
GM

∆ϕ =
a(1àe2)
2ùGM (2 + 2íà ì)



Tests of GR in the Solar system
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What can be generalized?

Among the previous tests, it seems possible to generalize

• Light deflection
need to determine independently mass and deflection
cosmology: - we do not measure the deflection but the

distortion of light bundles
- energy of the photons

• Motion of  test-bodies
growth of structures / velocity fields

• Constants

But:
- time evolution (growth of structure): 

information on the dynamics
evolution effects

- statistical interpretation and dependence on the initial conditions
- super-Hubble modes



Dark matter and lensing

ds2 = àB(r)c2dt2 +A(r)dr2 + r2dΩ2

For any spherically symmetric metric of the form

îò = à ù + 2
R
b

∞
r2
dr

B(r0)/r
2
0àB(r)/r2

A(r)B(r)
qthe deflection angle is



MOND vs DM

îòGR → c2
2ù GMa0

√

Rotation curves

v2(r)→ v2∞ ñ GMa0
p

stars

gazIf this dynamics is due to the existence of 
dark matter, then

MOND alternative

a0: limit acceleration

a < a0 : a = aNa0
√

= GMa0

p
/r

Φ = à
r

GM + GMa0
p

ln r

r >
a0

GM
q

, îòMOND =
c2

2ù GMa0

√

Equivalent to have an effective potential



MOND vs DM

Gravity + údark(r) + úb(r)

Newton +
úDM(r) + úb(r)

MOND+
0 + úb(r)

v2(r)

N
ew

tonian lim
it

new fields

Tdark
ö÷ ü Tb

ö÷
Tdark
ö÷ ý Tb

ö÷

Dark matter Gravity

D
ark sector

field theory

Constraint DM
(Blanchet, astro-ph/0605140)



Lensing and mass

In the Solar system, we can determine the mass of the Sun and
the deflection angle independently

This is why we have a test of GR

Now, one has (at least) 3 notions of mass:
- Baryonic mass, Mb,

assumed to be proportional to the luminous mass
- Dynamical mass, Mrot,

evaluated from rotation curves
- Deflecting mass, Mlens,

evaluated from lensing

In the standard DM interpretation

Mb < MDM ' Mrot ' Mlens



Scalar-tensor theories

Let us consider lensing in a large family of gravity theories including
General Relativity

+ Sm{matter, gàö÷ = A2(þ)gö÷}
S =

16ùG
c3

R à g
√ {R à 2(∂öþ)

2 à V(þ)}
spin 2

spin 0

RAQUAL version (∂öþ)
2 → f[(∂öþ)

2, þ]

Sem = 4
1
R à gà
√

gàabgàcdFacFbdd
dx

= 4
1
R à g
√

gabgcdFacFbdA
dà4(þ)ddx

Maxwell electromagnetism is conformally invariant in d=4

6= 0 = 0
Light deflection is given as in GR

îò =
bc2
4GM



What is the difference?

The difference with GR comes from the fact that massive matter feels the
scalar field

ëë

graviton scalar

GN = G(1 + ë2)
ë = d lnA/dþ

Motion of massive bodies determines GNM not GM

Thus, in terms of observable quantities, light deflection is given by

îò = (1+ë2)bc2
4GNM ô

bc2
4GM

Which means
Mlens ô Mrot



Disformal coupling

A nice trick allows to increase light deflection in scalar-tensor theories

gàö÷ = A2(ϕ)[gö÷ +B(ϕ)∂öϕ∂÷ϕ]

Preferred direction
(radial for spherical system)

The only difference with GR is in the radial component and thus

îò = îòGR +
R
b

∞
r r2/b2à1
√ dr B(∂rþ)

2

B(þ)(∂rþ)
2 = 4 GMa0

p
/c2

îò = îòbGR+ c2
2ù GMa0
√

' îòGR+DM

Bekenstein, gr-qc/9211017

Now, assume that

then

Bekenstein, Sanders,
gr-qc/9311062

Bruneton & Esposito-Farèse, arXiv:0705.4043



Stratified theories

gàö÷ = A2(ϕ)gö÷ +B(ϕ)VöV÷

The former trick was extended by Bekenstein (TeVeS theory…)

Dynamical unit timelike vector

This is at the basis of the construction of TeVeS theories

See Bruneton & Esposito-Farèse, arXiv:0705.4043

When dealing with a specific theory, before determining how well
it fits the data, one should investigate if it does not have any pathologies



Observations

In conclusion, all we are doing is to test the compatibility of the mass
distribution measured by different methods.

Early studies:
- Comparison of X-ray and strong lensing

- add weak lensing

- Cluster scale (2 Mpc): X-ray vs lensing. 

- Use of SZ 

Allen et al. MNRAS 324 (2001) 877 

Miralda-Escude & Babul, ApJ 449 (1995) 18

Squires et al., ApJ 461 (1996) 572

Recent data allow to go beyond the spherically symmetric case



Bullet cluster
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Cluster merger at z=0.296
Spatial segregation of collisionless

matter/plasma
Lensing reconstruction does not 

follow the plasma distribution

See Douglas Clowe talk for more…

Necessity for 2 eV neutrinos

Proof of the existence of DM (…)

Mond in non-spherical geometry (dependence on the version of the theory
and on fitting function) Angus et al., astro-ph/0606216

Angus et al., astro-ph/0609125

See Robert Sanders talk for more…



Abell 520

X vs lensing red light vs lensing red light vs X

M
ahdavi, arX

iv:0706.3048

Existence of a dark core that coincides with the peak of X-emission

Bernard: MOND regime at 90 kpc….



Conclusions

It is always possible to design coupling to reproduce the
deflection angle by DM+GR

We have mostly considered spherically symmetric solutions

The most important issue is how well we can measure the profils
Mb(r), Mrot(r) and Mlens(r)

Recent observations drive to go beyond spherical symmetry

Then, conclusions are not straightforward:
- depend on the version of MOND
- depend on the choice of the fitting functions

See also discussion CL0024+17 this morning



Cosmological tests



Many tests concerning various constants (α, µ, G mainly). 

Tests on different time scales:
local (z=0) atomic clocks, Solar System
geophysical (z=0.1..0.4) Oklo, meteorites
astrophysical (z=0.2-3.5) quasars
cosmological (z=103, 108) CMB, BBN.

Constants (local position invariance)

General investigation of the link 
of these constraints and gravity 
theories

JPU, RMP 75 (2003) 425;
astro-ph/0409424



Predictions of ΛCDM

ds2 = a2(ñ)[à (1 + 2Φ)dñ2 + (1à 2Ψ)íijdx
idxj]

Most observations involve only low-z and sub-Hubble regime 
(but CMB and BBN) 

Background

H2/H2
0 = Ω

0
m(1 + z)3 + (1à Ω0

m à Ω0
Λ)(1 + z)2 + Ω0

Λ

Sub-Hubble perturbations

Φ = Ψ

∆Ψ = 4ùGúa2î

î0 + ò = 0

ò0 +Hò = à∆Φ



Growth factor

In the linear regime, the growth of density perturbation is then dictated by

It can be considered as an equation for H(a)

This implies a rigidity between the growth rate and the expansion history

î̈+ 2Hîç à 4ùGúmatî = 0

(H2)0 + 2
a
3 +

î 0
î 00

ð ñ
H2 = 3

a5î 0
Ω0H

2
0î

H2
0

H2

= 3Ωm0 î 0(z)2
(1+z)2

R
z 1+z

î (à î0)dz

Bertschinger, astro-ph/0604485, 
JPU, astro-ph/0605313

Chiba & Takahashi, astro-ph/0703347

H(a) from the background (geometry) and growth of perturbation have to
agree.

Proposal: D(z) from galaxy cluster survey Tang et al, astro-ph/0609028



Growth factor: example

Wang et al.,arViv:0705.0165

Flat ΛCDM model

SNLS – WL from 75 deg2 CTIO – 2dfGRS – SDSS (luminous red gal)
CMB (WMAP/ACBAR/BOOMERanG/CBI)

Flat w = constant

Consistency check of any DE model within GR with non clustering DE
Assume Friedmannian symmetries!            (see e.g. Dunsby and JPU)

To go beyond we need a parameterization of the possible deviations



“Post ΛCDM”

ds2 = a2(ñ)[à (1 + 2Φ)dñ2 + (1à 2Ψ)íijdx
idxj]

Restricting to low-z and sub-Hubble regime 

Background

H2/H2
0 = Ω

0
m(1 + z)3 + (1à Ω0

m à Ω0
Λ)(1 + z)2 + Ωde(z)

Sub-Hubble perturbations

∆(Φà Ψ) = ùde

à k2Φ = 4ùGNF(k,H) úa2î+∆de

î0 + ò = 0

ò0 +Hò = à∆Φ + Sde
JPU, astro-ph/0605313

(F, ùde,∆de, Sde) = (1, 0, 0, 0)ΛCDM
See Bhuvnesh Jain talk



data

Weak lensing

Galaxy map

Integrated Sachs-Wolfe

Velocity field

ô ∝ ∆(Φ+Ψ)

îg = b î

ò = ì î

ΘSW ∝ Φç +Ψç

DATA OBSERVABLE

Various combinations of these variables have been considered



JPU and Bernardeau, Phys. Rev. D 64

Pδ

P∆Φ

On sub-Hubble scales, the gravitational potential and density contrast are 
related by

Galaxy catalogs (SDSS,2dF...)
measurement of ξ(r) up to 500h-1Mpc

Weak lensing
will be measured up to 100h-1Mpc

Toy model: 4D-5D gravity (brane induced)
perturbations freeze on large scales (idem as effect of Λ)
power spectra of Φ and δ are not identical

Test of the Poisson equation

∆Φ = 4ùGúa2î



Galaxy-velocity correlation

hîg òi = bìhî2i

hîgôi ∝ bhî∆(Φ+Ψ)i∝ 8ùGúa2bhî2i
Galaxy map

velocity map

weak lensing

ΛCDM

The ratio of these 2 quantities is independent of the bias
Zhang et al, arXiv:0704.1932

Assume - no velocity bias        (SDE=0)
- no clustering of DE   (∆DE=0)



Correlations

Correlations Dependence Limit Case

hîgîgi hôôi

hîgòi hîgôi

(F, ùde,∆de)

(F, ùde,∆de)

bias

TeVeshîgΘSWi bias

JPU-Bernardeau

Schmidt et al, arXiv:0706.1775

Zhang et al, arXiv:0704.1932

velocity bias

A Full study of all the correlations needs to be performed

No test alone can bring a proof of deviation from GR and most studies
assume ∆DE=0

Null tests for deviation from ΛCDM

Possible to constrain the cases where SDE=∆DE=0. Quite general.



At linear order, growth factor entangles H(a) and Poisson equation.

î(1) = D(t)ε(x)

At second order

î̈ (2 ) + 2Hîç(2 ) = 4ùGú(î (1 ))2 + aà2∇Φ .∇ î (1 ) + a (à2 )∂ iju
(1 )

i
u (1 )

j

hî3i = h(î(1))3i+ h(î(1))2î(2)i

S3 = hî3i/hî2i2 is independent of D(t). It depends slightly on the
cosmological

parameters – dependence on spectral index - Gaussianity

Weakly non-linear regime



Cosmic shear 3-point function

Bernardeau, astro-ph/0409224

Assume a modified (scale dependent) Poisson equation

Compute the reduced third moment.

Use 3-point correlation of the shear field Bernardeau et al, A.A.Lett.389(2002)28
Pen et al., ApJ592(2003)664

Disfavor rs<2h-1 Mpc

OCDM

CDM

ΛCDM

DGP-like
rs=2h-1Mpc

rs=10h-1Mpc

Virmos-Descart data



Yukawa fifth force

Various studies have focused on a Yukawa modification of GR

U =
r

Gm 1 + ë e
àr/õ

ð ñ
Such a deviation is well constrained in the Solar system



Yukawa fifth force

Concerning the growth of structure, it reduces to assuming
à k2Φ = 4ùG(1 + fY(kõ))úa

2î Φ = Ψ

Sealfon et al., astro-ph/0404111

Compute power spectrum and bispectrum of LSS

ë = 0.025æ 1.7 (2dF) ë = à 0.35æ 0.9 (SDSS)

on a scale λ~6h-1Mpc

White & Kochanek, astro-ph/0105227
Weak lensing computed from propagation 

of rays through a known density distribution.
No consistent analysis of the growth of structures

GR     
λ=0.3 h-1 Mpc
λ=1 h-1 Mpc

λ=3 h-1 Mpc



Yukawa fifth force

Shirata et al., astro-ph/0501366

Sereno & Peacock, astro-ph/0605498

Effect is almost degenerate on power spectrum shape with effect of
massive neutrinos. 

Stabenau & Jain, astro-ph/0604038

N-body simulations on scales 1-100 Mpc
The scale dependence modification of the growth factor in linear
regime is enhance by NL
Peacock&Dodds approach can be extended
Lensing power spectra See Bhuvnesh Jain

Linear evolution + Peacock&Dodds for NL
Comparison with SDSS

à 0.5 < ë < 0.6 (õ = 5hà1Mpc)

à 0.8 < ë < 0.9 (õ = 10hà1Mpc)
Exclusion plot in (α,λ) less obvious than in Solar system

(dependance on cosmological parameters…)



Gravitational waves

In models involving 2 metrics (scalar-tensor, TeVeS,…), gravitons and
standard matter are coupled to different metrics.

In GR:
photons and gravitons are massless and follow geodesics

of the same spacetime

îTíg = Tí à Tg = 0

In bi-metric:
photons and gravitons  follow geodesics of two spacetimes

îTíg 6= 0

Example:
TeVeS model. Observable=SN1987a

îTíg = à 5.3 days

Kahya & Woodard, arXiv:0705.0153



dSs

dΩo

JPU, Aghanim, Mellier, PRD 2003

dΩs

dSo

D lum(z) = (1 + z) 2D A (z)

Photons travel on null geodesics
Geodesic deviation equation holds

Etherington, Phil. Mag. 15 (1933) 761; Ellis, 1971

SNIa data+radio galaxies
2σ violation

Basset and Kunz, PRD69 (2004)101305

X-ray + SZ observation of clusters
no indication of violation

If number of photons is conserved

Reciprocity relation: rs=ro(1+z)

redhsift

D
L/

(1
+z

)2 D
A

Distance duality relation

Set constraints on photon-axion mixing



Model dependent studies

I will not detail the numerous studies in which one given model (TeVeS,
DGP, scalar-tensor,…) is compared to combined set of data. 

e.g. Amendola et al., arXiv:0704.242
Song, astro-ph/0602598,
Knox et al., astro-ph/0503644,…

General limits:
- Non-linear regime: mappings are determined from numerical
simulations assuming Newtonian gravity.
- Effect of massive neutrinos: can induce scale dependent
modification of the power spectrum

Lifting degeneracies:
- background: 1 function H(a)
- low z – sub-Hubble: D(a)
- one can construct several models reproducing the same
subset of data
- needs to include local constraints

See JPU, astro-ph/0605313



Conclusions



Conclusions

Good motivations to test GR on astrophysical scales 
important to understand the parameters we are measuring in ΛCDM.

Are they reasons to extend the ΛCDM framework
- post-ΛCDM formalism (?)
- importance null-tests vs fitting models

Would allow to design parameterizations adapted to each class of models

Many tests have been proposed but yet no systematic investigation

Dependence on initial conditions and other limitations
Statistical analysis-initial conditions
massive neutrinos
NL regimes
Theoretical limitations

Importance to consider background/perturbation/local tests

Galactic scales / cosmological scales


