Observations of Gamma-Ray bursts at High Redshift

Nial Tanvir University of Leicester

Particular thanks to Andrew Levan (Warwick), Palli Jakobsson (Hertfordshire), Evert Rol, James Duke (Leicester)

GRBs as high redshift probes - in brief

Pros:

• Extremely bright and visible at large luminosity distance.

 Broad SEDs and detectable in gamma-rays through high intervening columns of gas and dust.

• Cons:

Rare (~2 per day per universe to BATSE and Swift limits).

 Hard to follow up, so samples tend to be inhomogeneous and incomplete.

Characterising the early stars and galaxies

Hierarchical growth means small, faint galaxies at early times.

GRBs pinpoint the hosts no matter how faint, allowing deep followup with knowledge of the redshift. GRB hosts may be typical of the galaxies driving reionization.

They also provide information on both the immediate environment of the burst and the global properties of the host ISM through absorption line spectroscopy.

Eg. GRB 020124: Host galaxy found via GRB afterglow at z=3.20 (Hjorth et al. 2003), despite being undetected to R=29.5 by HST! (Berger et al. 2002)

GRB 080819B

Pi of Sky

Reached visual magnitude 5.3!

REM & Tortora

Redshift = 0.937 (Vreeswijk et al. GCN)

At such a luminosity, GRB 080319B would have been easily detectable if it at occurred at only 200 million years after the Big Bang!

GRB CECE19B

Provisional analysis!

The observed redshift distribution

Jakobsson et al. 2006 defined a homogeneous "observable" sample of *Swift* GRBs with rapid (<12 hr) XRT positions, good Sun angle (>55 degs), low foreground extinction (A_V <0.5), non-polar declination (|dec|<70 degs). *Aim is to be optically unbiassed*.

GRB 050904 First z>6 GRB (Haislip et al. 2006; Kawai et al. 2006)

Photometry from SOAR, UKIRT and Gemini-S

GRB060927

z=5.47, and again a strong host DLA (Ruiz-Velasco et al. 2007)

No host seen with NICMOS to H(AB)=27.0 (Duke et al.)

GRB 060923A - high-z?

H-band drop out. Afterglow colours could indicate very high-z

GRB 060923A - high-z?

Our VLT observations show a host in R-band and continuum to about 4500 Angstroms, so z<3 and Av>2.

Optimizing high-z searches with Swift:

X-ray determined N(HI) excess is certainly a good pointer (Grupe et al. 2007).

Optimizing high-z searches:

High-z bursts should typically have longer durations, but the intrinsic spread is high, so doesn't allow us to remove many from consideration. Eg. Using Willingale's "luminosity time".

Probe for stars and black holes in the epoch of reionization.

A US/UK/Italian mission proposed in January to the AO for NASA small explorer missions to launch in 2012.

JANUS will:

Hunt the first gamma ray bursts: giant explosions from the deaths of the first massive stars

Hunt the first QSOs: the first massive accreting black holes

JANUS

How will JANUS let us explore the epoch of reionization?

Near InfraRed Telescope (UK) uses slitless spectroscopy to get redshifts of z>5 gamma ray bursts, and surveys the sky for highest redshift quasars

X-ray flash monitor (Penn State) has huge field of view (4 str) to find high-redshift gamma-ray bursts

> Ultra-agile satellite bus (SWRI/DRAPER) looks anywhere quickly

Conclusions and prospects

- High-z GRBs powerful means of locating and studying star formation and galaxy evolution into the era of reionization. GRB 080319B provides an extreme illustration.
- Current rates are low (but broadly consistent with predictions for Swift of $\sim 10\%$ at z>5) despite fairly intensive followup.
- There exist a small but significant population of highly reddened GRBs which can masquerade as high-z.
- Current strategies (rapid 2m 8m followup) should find at least several z>6 GRBs over lifetime of *Swift*. But campaign of lowering trigger threshold should increase high-z detection rate.
- High S/N spectroscopy key to using GRB afterglows to constrain reionization.
- Any high-z bursts found provide important targets for future facilities, eg. JWST, ALMA etc.
- Future missions (JANUS) may make high-z GRB studies more routine.

