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Stellar populations of LAEs have been studied over 3 <z < 6.

xNOwW at nign-z

* e.g., Chary et al. 2005; Gawiser et al. 2006; Pirzkal et al. 2007; Nilsson et al. 2007; Lai et al. 2007,2008;
Pentericci et al. 2009; Finkelstein et al. 2007, 2008, 2009a.

A wide range of physical properties are found, they may depend on the depth of the study.

*  Pirzkal et al. studied LAEs from the HUDF, and due to the small volume and faint luminosities probed, they found very
young ages and low masses - a few Myr and 1068 Me.

*  Lai et al. (2007, 2008) and Finkelstein et al. (2008, 2009a) studied IRAC detected LAEs, and found these to be more
massive, up to ~ 5 x 10'° Mo.

*  Recent results (see McLinden et al. poster) confirm this variety at z ~ 3.1, finding 7/8 spec. conf. LAEs are young,
and that one old one may have a mass of ~ 10"" Me.

Regardless of selection, LAEs older than a few hundred Myr are rare, thus as a population, they still
appear to be predominately young, and their properties don’t change with redshift.

What about closer to home? Are there LAEsS? Are they different?




GALEX Dlscovered LAEs

Devarveng et al. (2008)
discovered ~ 100 LAEs
with GALEX spectroscopy.

We found optical
counterparts to 30 of
these: 3 in the ECDF-S
with MUSYC, and 27 in the ‘
EGS with the CFHTLS. |
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fluxes, we fit stellar 0 ._
population models to these -
objects

Using the UV+optical 'TGS‘ZV ' '9 |

Finkelstein et al. 2009c,
Apd, 700, 276




Model Fitting Results
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Model Fitting Results

* From the 26/30 objects which we could fit well:

% 200 Myr < Age < 10 Gyr (median ~ 1.8 Gyr)

% 10° Mo< Mass < 3 x 10’ Mg (median ~ 7 x 10° Mo)
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Model Fitting Results

* From the 26/30 objects which we could fit well:
% 200 Myr < Age < 10 Gyr (median ~ 1.8 Gyr)
% 10° Mo< Mass < 3 x 10’ Mg (median ~ 7 x 10° Mo)
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AGN Contamination?

* A number of the SEDs appeared to be very red.

* Could be very dusty, or could be from an AGN-like power-law spectrum.

* \We thus obtained optical spectroscopy of 23/27 EGS LAEs with
Hectospec on the 6.5m MMT

* Finkelstein et al. 2009e, under review at ApdJL, astro-ph/0906:4554

* We fit Gaussian line profiles to detected lines in all objects, with line errors estimated
via 10° Monte Carlo simulations.

* We then performed multiple tests for the presence of AGN.




Line Widths and High-lonization Emission

* [NeV] takes 126 €V to ionize = strong
Emission lines from the broad-line region of AGN indicator.

AGNSs typically show Av = 1000 km s,

* We detect [NeV] in four (two) objects at
Only one object had Av > 1000, with Av = 1064 km > 3 (2) o.
s,

* Hell 4686 also typically denotes AGN
activity, and we observe this line in one
(one) object at > 3 (2) o in one object.

The remaining objects had Av < 300 km s™.
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| INne Ratlos

* One of the most commonly used methods to
classify AGN relies on the ratios of [NIl] 6484/Hx
vs. [Oll)/HB (Baldwin, Phillips and Terlevich 1981;
BPT).
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| INne Ratlos
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X-rays and Infrareo

* Only one object was detected in the AEGIS-X catalog (down to 1.5
x 10%° erg s7'). Although its X-ray luminosity alone didn’t qualify it as
an AGN, combining it with the X-ray hardness ratio satisfies the
AGN classification scheme of Szokoly et al. (2004).

* The rest of the sample, which is not detected in the X-rays, could
harbor an obscured AGN.

* Stern et al. (2005) defined an IRAC color-color region which
preferentially selects AGN in the redshift range of our sample,
due to hot dust heated by an AGN.

% Only 4/23 objects had IRAC coverage, and only one EGS27
satisfied these criteria.

* 9/13 LAEs with MIPS coverage were detected at > 3 o, which
could imply emission from slightly cooler dust, although star
formation at these redshifts could result in similar emission.
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Evolution in LAE AGN Fraction??

Assigned a confidence level to the identification of AGN, based on number of
methods and confidence in the method, and found a AGN fraction in LAEs of
43+18 56 %.

Using X-ray data at high-z, AGN fractions have been found to range from 1-5% among LAEs
(Malhotra et al. 2003; Wang et al. 2004; Gawiser et al. 2006; Ouchi et al. 2008; Nilsson et al.

2009; Lehmer et al. 2009), with upper limits as high as 17% using optical spectra (Wang et al.
2009).

However, at most three of our methods (line widths, high ionization emission and X-ray
emission) have been applied in LAEs at z > 3.

% Reclassifying with only these methods, we find an AGN fraction of 26%, which still implies
evolution from high-z.

When restricted to measurements available at high-z, we would misclassify anywhere from
15-40% of our sample.

This leads us to conclude that high-z LAE AGN fraction measurements may be at best lower
limits. High-resolution IR imaging and MIR spectroscopy from JWST will help resolve this.




Evolution in LAE AGN Fraction?
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Back to Stellar Populations

% Discarding the probable AGNs, we now find that z
~ 0.3 LAEs have:

* Age: 0.2 - 2.5 Gyr (mean ~ 0.8 Gyr)

% Mass: 1 -15x 10° Mg (mean ~ 5 x 10° Mg)




Probability

0. 20 S

—

. Average age probability
- distributions of all LAESs

—

0 15| observed with Hectospec

0.10

0.095

I I I I I I I I I [ I I ) Ll

oool . ... s ™

107 10° 10”
Age (yr)

prmh
-
(oM

= :
O.—'ll llllllllllllllll.



Probability

0.20] & =571
. Average age probability
distributions of only

0 15 | star+forming: LAlis
0..4.0

0. 094

(016 I

10° 10"

10°

Age (yr)

10?

1010




Summary

At first glance, low-z LAEs appear to be much more
evolved in age and mass than at their high-z analogs.

Nearly half of them harbor AGN, which implies that the
fraction of LAEs harboring AGN has increased
dramatically.

* Although, we note that using only the methods
available at high-z, we would misclassify a good
number of objects as star-forming.

Discarding the AGNs, we still find a typical age and
mass greater than that at high-z, although similar to the
“massive” high-z LAEs.

This supports a picture where the majority of LAEs at 3
< Z < 6 are all galactic building blocks in the same
phase of formation, whereas these low-z analogs
represent very different objects, although possibly
analogous to the massive LAEs at high-z.
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