

Evolution of Lyx Galaxies Over 9 Gyr of Cosmic Time Steven Finkelstein Texas A&M University Seth Cohen, Sangeeta Malhotra, James Rhoads (ASU) & Casey Papovich (TAMU)

- * Stellar populations of LAEs have been studied over $3 \le z \le 6$.
 - e.g., Chary et al. 2005; Gawiser et al. 2006; Pirzkal et al. 2007; Nilsson et al. 2007; Lai et al. 2007,2008; Pentericci et al. 2009; Finkelstein et al. 2007, 2008, 2009a.
- * A wide range of physical properties are found, they may depend on the depth of the study.
 - Pirzkal et al. studied LAEs from the HUDF, and due to the small volume and faint luminosities probed, they found very young ages and low masses a few Myr and 10⁶⁻⁸ M_☉.
 - * Lai et al. (2007, 2008) and Finkelstein et al. (2008, 2009a) studied IRAC detected LAEs, and found these to be more massive, up to ~ 5 x 10^{10} M_{\odot}.
 - Recent results (see McLinden et al. poster) confirm this variety at $z \sim 3.1$, finding 7/8 spec. conf. LAEs are young, and that one old one may have a mass of $\sim 10^{11} M_{\odot}$.
- Regardless of selection, LAEs older than a few hundred Myr are rare, thus as a population, they still appear to be predominately young, and their properties don't change with redshift.
- What about closer to home? Are there LAEs? Are they different?

GALEX Discovered LAEs

5

- Devarveng et al. (2008) * discovered ~ 100 LAEs with GALEX spectroscopy.
- * We found optical counterparts to 30 of these: 3 in the ECDF-S with MUSYC, and 27 in the EGS with the CFHTLS.
- # Using the UV+optical fluxes, we fit stellar population models to these objects

***** Finkelstein et al. 2009c, ApJ, 700, 276

Model Fitting Results

Model Fitting Results

* From the 26/30 objects which we could fit well:

200 Myr < Age < 10 Gyr (median ~ 1.8 Gyr)</p>

 $* 10^9 M_{\odot} < Mass < 3 \times 10^{11} M_{\odot}$ (median ~ 7 x 10⁹ M_{\odot})

Model Fitting Results

* From the 26/30 objects which we could fit well:

200 Myr < Age < 10 Gyr (median ~ 1.8 Gyr)</p>

 $* 10^9 M_{\odot} < Mass < 3 \times 10^{11} M_{\odot} \text{ (median } - 7 \times 10^9 M_{\odot}\text{)}$

Z	Age	Mass
3	A few Myr - 1 Gyr	10 ⁸ - 10 ¹⁰ M⊙
4.5	3 - 500 Myr	~ 10 ⁸ - 5 x 10¹⁰ M⊙
~ 5 - 6	A few - 700 Myr	10 ⁷ - 10 ¹⁰

AGN Contamination?

* A number of the SEDs appeared to be very red.

- * Could be very dusty, or could be from an AGN-like power-law spectrum.
- We thus obtained optical spectroscopy of 23/27 EGS LAEs with Hectospec on the 6.5m MMT
 - Finkelstein et al. 2009e, under review at ApJL, astro-ph/0906:4554
- We fit Gaussian line profiles to detected lines in all objects, with line errors estimated via 10³ Monte Carlo simulations.
 - ***** We then performed multiple tests for the presence of AGN.

Line Widths and High-Ionization Emission

- Emission lines from the broad-line region of AGNs typically show $\Delta v \ge 1000$ km s⁻¹.
- * Only one object had $\Delta v > 1000$, with $\Delta v = 1064$ km s⁻¹.
- * The remaining objects had $\Delta v < 300$ km s⁻¹.

- * [NeV] takes 126 eV to ionize → strong AGN indicator.
- * We detect [NeV] in four (two) objects at > 3 (2) σ .
- * Hell 4686 also typically denotes AGN activity, and we observe this line in one (one) object at > 3 (2) σ in one object.

Line Ratios

* One of the most commonly used methods to classify AGN relies on the ratios of [NII] 6484/Hα vs. [OIII]/Hβ (Baldwin, Phillips and Terlevich 1981; BPT).

Line Ratios

Line Ratios EGS16 EGS10 EGS21 2 EGS17 EGS11 EGS2 EGS22 EGS3 EGS18 EGS12 🔺 EGS23 OEGS7 EGS13 EGS19 A EGS24 Seyferts ***** λ5007/Hβ) OEGS8 EGS14 EGS20 🔺 EGS25 EGS9 EGS15 **DEFINITE AGNS:** EGS1, EGS3, EGS14, **EGS15 AND EGS24.** LINERs **POSSIBLE AGNS:** EGS16, EGS17 AND 5 -0.50.0 0.5 -1.0**EGS21**. $Log ([NII] \lambda 6583/H\alpha)$

X-rays and Infrared

- * Only one object was detected in the AEGIS-X catalog (down to 1.5 x 10⁴⁰ erg s⁻¹). Although its X-ray luminosity alone didn't qualify it as an AGN, combining it with the X-ray hardness ratio satisfies the AGN classification scheme of Szokoly et al. (2004).
- * The rest of the sample, which is not detected in the X-rays, could harbor an obscured AGN.
 - Stern et al. (2005) defined an IRAC color-color region which preferentially selects AGN in the redshift range of our sample, due to hot dust heated by an AGN.
 - * Only 4/23 objects had IRAC coverage, and only one EGS27 satisfied these criteria.
 - * 9/13 LAEs with MIPS coverage were detected at > 3 σ, which could imply emission from slightly cooler dust, although star formation at these redshifts could result in similar emission.

Evolution in LAE AGN Fraction?

- * Assigned a confidence level to the identification of AGN, based on number of methods and confidence in the method, and found a AGN fraction in LAEs of 43⁺¹⁸-26 %.
- Using X-ray data at high-z, AGN fractions have been found to range from 1-5% among LAEs (Malhotra et al. 2003; Wang et al. 2004; Gawiser et al. 2006; Ouchi et al. 2008; Nilsson et al. 2009; Lehmer et al. 2009), with upper limits as high as 17% using optical spectra (Wang et al. 2009).
- However, at most three of our methods (line widths, high ionization emission and X-ray emission) have been applied in LAEs at z > 3.
 - Reclassifying with only these methods, we find an AGN fraction of 26%, which still implies evolution from high-z.
- When restricted to measurements available at high-z, we would misclassify anywhere from 15-40% of our sample.
- * This leads us to conclude that high-z LAE AGN fraction measurements may be at best lower limits. High-resolution IR imaging and MIR spectroscopy from JWST will help resolve this.

Back to Stellar Populations

Discarding the probable AGNs, we now find that z
~ 0.3 LAEs have:

* Age: 0.2 - 2.5 Gyr (mean ~ 0.8 Gyr)

***** Mass: 1 - 15 x 10⁹ M $_{\odot}$ (mean ~ 5 x 10⁹ M $_{\odot}$)

Summary

- At first glance, low-z LAEs appear to be much more evolved in age and mass than at their high-z analogs.
- Nearly half of them harbor AGN, which implies that the fraction of LAEs harboring AGN has increased dramatically.
 - * Although, we note that using only the methods available at high-z, we would misclassify a good number of objects as star-forming.
- Discarding the AGNs, we still find a typical age and mass greater than that at high-z, although similar to the "massive" high-z LAEs.
- * This supports a picture where the majority of LAEs at 3 < z < 6 are all galactic building blocks in the same phase of formation, whereas these low-z analogs represent very different objects, although possibly analogous to the massive LAEs at high-z.

- 11 Ph.D. Astronomers at Texas A&M
 - * Darren DePoy
 - Keely Finkelstein
 - Steven Finkelstein
 - * Kevin Krisciunas
 - * Lucas Macri
 - # Jennifer Marshall
 - Casey Papovich
 - * Anne Pellerin
 - Nick Suntzeff
 - Kim-Vy Tran
 - * Lifan Wang