Radio Galaxies as Lyman- α emitters

Bob Fosbury Montse Villar-Martín IAP col2009

1338-1942

FORSI specpol Carlos de Breuck

restframe H-band

(Hz) Radio Galaxies

Most massive galaxies at all redshifts (Rocca-Volmerange et al. 2004; Seymour et al. 2007)

Derived from Spitzer observations giving the restframe NIR (stellar) luminosities

(Hz) Radio Galaxies

Most massive galaxies at all redshifts (Rocca-Volmerange et al. 2004; Seymour et al. 2007)

Derived from Spitzer observations giving the restframe NIR (stellar) luminosities

- Hosts to the most massive SuperMassive Black Holes (SMBH) ~ 10⁹ M_{sun}
- Parent population includes the radio quasars
- AGN is the source of copious ionizing radiation and the origin of jets that carry mechanical energy
- Associated with high star formation rates at high redshift
- At high-z, the RG reside in overdense regions and are may be embedded in protoclusters
- Progenitors of brightest cluster galaxies in the local Universe

- Rare objects
 - few x 10⁻⁸ Mpc⁻³ 2 < z < 5; almost non-existent at low-z
 - Agglomeration of high masses of stars, gas and AGN-components

- Rare objects
 - few x 10⁻⁸ Mpc⁻³ 2 < z < 5; almost non-existent at low-z</p>
 - Agglomeration of high masses of stars, gas and AGN-components

Constituent	Properties (K, cm ⁻³)	Observable	Log(Mass) (M _{sun})
Relativistic plasma	E ~ 10 ⁶⁰ erg	Radio and X-ray continuum	
Hot ionized gas	Log(T _e) ~ 7–8 Log(n _e) ~ -1.5	Radio depolarization X-rays	11–12
Warm ionized gas	Log(T _e) ~ 4–5 Log(n _e) ~ 0.5–1.5	UV-opt emission lines and nebular continuum	9–10.5
Cool atomic gas	Log(T _s) ~ 3 Log(n _{HI}) ~ I	HI and UV-opt absorption lines	7–8 (+)
Molecular gas and dust	T ~ 50–500 Log(n _{H2}) > 2	(Sub)mm lines/ctm UV-opt polarization	10–11
Old stars Young stars	t > I Gyr t < 0.5 Gyr	Opt/NIR ctm UV-opt ctm/Lyα	11–12 9–10
Quasar/SMBH		UV-opt BLR/ctm polarization radio etc.	9

Composite SED of 4C 23.56 at z = 2.5

De Breuck et al.

Left: absorbed non-thermal X-ray

Yellow: nebular continuum

Green: stars

Blue: AGN-heated dust

Red: starburst-heated dust

Magenta: scattered quasar

Cyan: radio synchrotron

4C 41.17, z = 3.8Contours I.4 GHzVLA; colour map Keck redshifted Ly α Radio size 90 kpc Reuland et al. 2003

MS 0735.6+7421, z = 0.216 HST/ACS,VLA (red), Chandra (Blue) Credit: X-ray: NASA/CXC/Univ. Waterloo/ B.McNamara; Optical: NASA/ESA/STScI/Univ. Waterloo/B.McNamara; Radio: NRAO/Ohio Univ./ L.Birzan et al.

Keck LRISp + VLT ISAAC

Emission spectra

- Predominantly AGN-photoionized
- N/H ~ Solar with variation < x 2 from a sample of nine z ~ 2.5 RG (Humphrey et al. 2008)
 - Comparable with low-z RG (Robinson et al. 1987)
- See also Reuland et al. 2003, 2007

Lya emitting warm gas story

- How is it distributed?
- How is it moving?
- How is it ionized?
- Where did it come from (chemical composition)?
- What do we learn?

Distribution

- Large scale
 - 100 kpc and greater, can be extended beyond radio source
- Two Components
 - ightspace > 0 Disturbed associated with jets, high Δv
 - Inner parts close to radio jets are clumpy with velocity spreads of $\geq 1000 \text{ km s}^{-1}$
 - $^{\circ}$ Quiescent low Δv
 - Outer parts appear more quiescent with $\Delta v \sim$ few hundred km s⁻¹

- Subject to extended absorption, especially among the smaller radio sources
- $^{\circ}$ Filling factor $\sim 10^{-5}$ (cf unity for the hot gas)
 - ~ 10¹² clouds each about 40 light days in size (van Ojik et al. 1997)
 - Covering factor unity (abs line) over > 100 kpc scale, column density 10^{18-19.5} cm⁻²

Kinematics (quiescent component)

- $^{\circ}$ Velocity gradient \approx velocity 'dispersion'
- Inflow, outflow or rotation?
 - Arguments based on correlated and uncorrelated asymmetries

4C 03.24 (=1234+036) z = 3.6 showing extended, quiescent Ly α halo Log(L_{Ly α}) = 44.2; size = 148 kpc van Ojik et al. 1996

Giant (extending beyond the radio source), metal-enriched halos at z ~ 2.5 (0943-242)

rage 16

SPATIAL PROFILES

Normalized Ly\(\alpha\) and Hell Difference shown in violet

* represents the side with the brightest radio hot-spot

The continuum centroid is taken as the NIR continuum peak

Evidence for inflow

Humphrey et al. 2007

Hi-res spectroscopy

- Wilman et al. 2004
- Bimodal column density distribution
 - $^{\circ}$ N_{HI} \approx 10^{18-20} cm⁻² intrinsic to RG
 - $N_{HI} \approx 10^{13-15} \text{ cm}^{-2} \text{Lyman}$ forest

Massive infalling HI halo

- B2 0902+34 Adams et al. 2009
- 3D optically-thick resonance scattering model explains both the Lyα emission and the 21cm absorption in the context of a very massive (>10¹² M_{sun}) neutral hydrogen halo within which is embedded an HII bi-cone
- The stellar mass is unusually small for this source => it is in an early mass-building phase

Figure 5. Geometry of our simulation. θ_i is the inclination as constrained by Carilli (1995). R_v is the system's virial radius. R_i is the ionization radius of the cones. θ_o is the opening angle of the ionization cones assumed here to be 90°. R_i , R_v , θ_o , and two variables controlling the velocity field are the model's five tunable parameters.

lonization

- Possibilities
 - Young stars
 - AGN photons and jet-driven shocks
 - Gravitational infall / shocks (cooling radiation)
- Luminous quasars are capable of producing highly luminous Lyα emission from their host galaxies but is this the only mechanism operating?

Lyman-Alpha Excess at high z

- $^{\circ}$ 54% of z > 3 and 8% of 2 < z < 3 Radio Galaxies show Ly- α emission stronger than can be explained by the standard AGN photionization models: we call these LAEx objects
 - Definition: we use Ly- α /HeII > 14 which is 90% of the minimum case B value predicted by the AGN photoionization models
 - Ly-α absorption will tend to lower this ratio
- LAEx's show lower restframe UV continuum linear polarization
- sub-mm detection rate is higher for z > 3

Villar-Martín et al. 2007

Note that the Ly- α /CIV is more U-dependent than Ly- α /HeII Small symbols for z < 3

Lyα halos in z ~ I Radio Galaxies

Zirm et al. 2009; HST/ACS prism observations

Lyα prism |Opt |NIR |

Keck LRISp spectropolarimetry

Anticorrelations with fractional, restframe UV continuum polarization

Dust re-emission and Ly- α + (unpolarized) UV continuum indicating star formation in LAEx

1.5

P(%)

MRC1243+036

Reuland et al. 2004, MNRAS, 353, 377

RG sub-mm detection rate

Archibald et al. 2001, MNRAS, **323**, 417

- High rates of (massive) star formation
 proceeding in the most massive galaxies at z
 3
- Evidenced by:
 - $^{\circ}$ ~ 10^{44} erg s⁻¹ of Ly- α emission
 - unpolarized UV continuum diluting the scattered quasar
 - \circ sub-mm emission with L $_{850\mu}$ ~ $10^{23.5}$ W Hz⁻¹ Sr⁻¹
- Is this 'merger-triggered'? Small radio sizes argue for recent triggering events

Conclusions

- The warm gas emitting/scattering the RG Lyα halos is one of several components that constitute the most massive of galaxies
- The high Ly α luminosities suggest that, at $z \geq 3$, the line is driven by star formation in addition to the AGN and gravitational collapse/cooling
- Kinematic and morphological studies suggest both outflows (driven by jets and starbursts) and massive gravitational inflows — a tracer of 'feedback'