Physical and Observed Parameters of Type II-Plateau Supernovae

Melina Cecilia Bersten

Universidad de Chile

Overview

- Good distance indicators: EPM, SEAM and SCM
- Connection with final stages of stellar evolution

Physical properties of the progenitor

SN II-P Progenitors

- Light curve + spectral modelling $\implies M_{\rm ej}, R$, $E_{\rm exp}$ and $M_{\rm Ni}$
- Pre-supernova imaging + stellar evolution models $\implies M_{\text{ZAMS}}$

Overview

- Good distance indicators: EPM, SEAM and SCM
- Connection with final stages of stellar evolution Physical properties of the progenitor:
 - Red supergiant structure with H-rich envelope (Van Dyk et al. 2003)
 - Stellar evolution: M_{ZAMS} : 8 25 M_{\odot} (Heger et al. 2007)
 - Pre-SN imaging: M_{ZAMS} : 8 17 M_{\odot} (Smartt et al. 2009)
 - Hydrodynamical modelling favors high mass range (Utrobin & Chugai 2008)
- Availability of a large, high-quality dataset of SN II-P from past and ongoing surveys such as CATS and CSP

Sample of SNe II-P

- Bolometric LCs for our sample of SNe II-P using bolometric corrections (Bersten & Hamuy 2009)
- Definition of parameters to characterize the LCs:
 - L_p : plateau luminosity
 - Δt_p : plateau duration
 - $\Delta \log L$: luminosity drop
 - $M_{\rm Ni}$: ⁵⁶Ni mass

A few SNe show a sloping LC (intermediate-L)

Bolometric Luminosity Range

• Weighted average $\langle L_p \rangle = 1.26 \times 10^{42} \text{ erg s}^{-1}$

Plateau Lengths

- Weighted average $\langle \Delta t_p \rangle = 90$ days
- Most SNe with Δt_p between 75 and 105 days
- Bi-modal trend in the distribution (secondary peak at \sim 60 days)

- $M_{\rm Ni}$ sensitive to adopted explosion time
- Assumed local deposition of gamma rays
- \checkmark Weighted average $\langle M_{\rm Ni} \rangle = 0.024 M_{\odot}$
- $M_{\rm Ni} < 0.1 M_{\odot}$,

except for SN 1992am ($M_{\rm Ni} > 0.26 M_{\odot}$)

Hydrodynamical Model

- One-dimensional Lagrangian code with flux-limited radiation diffusion
- Gray transfer for gamma-rays and arbitrary ⁵⁶Ni distribution
- Double-polytropic structure as initial model
 - Application to the prototypical SN 1999em
 - Grid of hydrodynamical models

Hydro-Model of SN 1999em

- Extended ⁵⁶Ni mixing
- Very good agreement with observations
- Physical parameters similar to previous hydrodynamical studies (Baklanov et al. 2005; Utrobin 2007)
- Low-mass models are not favored

Grid of Hydrodynamical Models

- Set of 46 hydrodynamical models:
 - $M_0 =$ 10, 15, 20 and 25 M $_{\odot}$
 - E = 0.5, 1, 2 and 3 foe
 - $R_0 = 500$, 1000, and 1500 R_{\odot}
 - \blacksquare $\, M_{\rm Ni} =$ 0.02, 0.04 and 0.07 M_\odot
- L_p , Δt_p , ΔL and v_{-30} are measured consistently with observations
 - Dependence of observable parameters on physical quantities
 - Correlations between observable parameters

Symbols: size proportional to M_0 , shape indicates different R_0 and colors related with $M_{\rm Ni}$ (fixed mixing)

Plateau luminosity

43 Δ Strong correlation with \bigcirc explosion energy <u>-</u> 2 42.5 Δ [erg \sim 0.4 dex of dispersion 9 Log L_p mainly related to 42 M_0 and R_0 $M_{\rm Ni}$ (fixed mixing) is not very influential 41.5 2 3 4 1 ()E [foe]

Symbols: size proportional to M_0 , shape indicates different R_0 and colors related with $M_{\rm Ni}$ (fixed mixing)

Plateau duration

E [foe]

200 Weaker correlation with 150 explosion energy [days] M_0 seems the most 100 0 important factor but $M_{\rm Ni}$ Δt_p also produces an effect \bigcirc 50 0 8 R_0 produces a minor effect 0 3 2 4 0 1

Symbols: size proportional to M_0 , shape indicates different R_0 and colors related with M_{Ni} (fixed mixing)

Expansion velocity

- Strong correlation with explosion energy
- M_0 is the main driver of the dispersion
- Slight dependence on $M_{\rm Ni}$ but not on R_0

- The Standard Candle Method (SCM):
 - Correlation between luminosity and expansion velocity during the plateau phase found by Hamuy & Pinto (2002)
 - Detailed study of this correlation for our sample of SNe II-P given by Olivares et. al (2010) leading to a precision of 13% in distance
 - Study of this correlation using our hydrodynamical models

Symbol Colors: different explosion energies (E)

SCM

- Models reproduce very well the obverved trend
- \blacksquare *E* is the main driver
- Shift between models and observations

Symbol Colors: different explosion energies (E)

- Models show
 slight correlation
 previously noted by
 Kasen & Woosley (2009)
- Observations show no correlation
- Lowest E and high M are not favored

Summary

- Using our hydrodynamical code we studied SN 1999em in detail:
 - very good agreement with observations when extended mixing of ⁵⁶Ni is used
 - Low-mass models are not favored but not fully ruled out.
- Solution We calculated a set of observable parameters $(L_p, \Delta t_p, \Delta L$ and $M_{Ni})$ for our data sample and for a grid of hydrodynamical models:
 - Parameter distribution:
 - 1.15-dex range in plateau luminosities
 - Most SNe with plateau durations between 75–105 days
 - \blacksquare $M_{\rm Ni} < 0.1 M_{\odot}$, except for SN 1992am with $M_{\rm Ni} > 0.26 M_{\odot}$
 - Dependence on physical quantities (E, R_0 , M_0 and M_{Ni})
 - Correlations using models and observations
 - Models confirm the SCM relation
 - Lowest E and high M are not favored

SCM distance

CMB redshif distance: $H_0 = 60$

Comparison with STELLA Code

- STELLA code (Blinnikov et al. 1998; courtesy N. Tominaga):
 - implicit hydrodynamics + multi-group radiative transfer
 - includes the effect of the line opacities
- Pre-SN model from Umeda & Nomoto (2005)

Symbol Colors: different explosion energies (E)

- Observations show similar tendency

Symbol Colors: different explosion energies (E)

- No correlation
- Ni mass affects tail luminosity but not the plateau

Bolometric Correction

- Three well-observed supernovae: SN 1987A, SN 1999em, and SN 2003hn
- Integration of all the available broadband data
- Estimation of the missing flux in UV and IR: blackbody (BB) fit
- Calculation of BC for two atmosphere models: Eastman et al. (1996) and Dessart & Hiller (2005)

Bolometric Correction

 $BC = m_{bol} - [V - A_V], \quad rms = 0.11 \text{ mag}$

Luminosity drop: $\Delta \log L$

Weighted average $\langle \Delta \log L \rangle = 0.783 \text{ dex}$

Symbols: size proportional to M_0 , shape indicates different R_0 and colors related with M_{Ni} (fixed mixing)

Luminosity drop

E [foe]

2 Some dependence on 1.5 \mathbf{S}^{-1} 0 explosion energy \mathbf{O} Δ [erg 8 Δ Strong correlation 8 with $M_{\rm Ni}$ Г Log 8 Some dependence on \triangleleft 0.5 R_0 but not on M_0 0 2 З 0 1 4

Symbols: size proportional to M_0 , shape indicates different R_0 and colors related with M_{Ni} (fixed mixing)

Expansion velocity

- Strong correlation with explosion energy
- M_0 is the main driver of the dispersion
- Slight dependence on $M_{\rm Ni}$ but not on R_0

