Ultraviolet Properties of Supernovae

Peter J. Brown University of Utah XXVI IAP Colloquium on SN Progenitors June/July 2010

Pete Roming, Peter Milne, Stephen Holland, Stefan Immler, Tyler Pritchard, & others

Swift UVOT Filter Curves

Timeline view of Swift SNe

(first 2 ¹/₂ years)

Growing Swift SN Sample

Large sample allows comparisons between but also within types -- range of properties, subclasses, host environments, etc

SN2007Y -- Ib/c

SN 2006bp -- IIP

Differentiating SNe by UV colors

Young SNe II are easily identified by their blue UV colors

 SN Ia subtypes can also be identified by their peculiar UV-optical color evolution

UV Absolute Magnitudes of SNe la

Brown et al. 2010, ApJ accepted – B10

Scatter in optical and near-UV consistent with observational errors (primarily uncertainty in Hubble flow distance for this nearby sample) uvm2 absolute magnitudes show evidence for larger intrinsic scatter

What causes the uvm2 scatter? Extinction? Metallicity? Age?

Explosion Mechanism? Mixing? Velocity? Density Structure?

Metallicity effects in nature and modeling of Type Ia Supernovae

- Original progenitor composition
- stellar evolution/winds
- white dwarf composition
- explosion/flame propagation
- Density structure
- Metal abundance in outer layers
- Ratios of particular elements

Effect of heavy element abundances on UV Spectra of SNe la

Effect of heavy element abundances on UV Spectra of SNe Ia

Effect of heavy element abundances on UV photometry of SNe Ia

Effect of ⁵⁶Ni abundance on UV spectrum of SNe la

Effect of ⁵⁶Ni abundance on UV spectrum of SNe la

Effect of ⁵⁶Ni abundance on UV photometry of SNe Ia

- Effects of metallicity strong in UV, particularly shortward of 2500 Angstroms
- The many ways that metallicity could effect the progenitor/evolution/explosion/radiation and the many ways that those differences could be modeled make it difficult to uniquely determine parameters based on UV photometry
- However, UV photometry can narrow down the allowed parameter space for better modeling

Host galaxies

SNe la Absolute Magnitudes grouped by host type

 SNe from young hosts dominate 1-1.3

 SNe from old hosts are mostly 1.3-1.9 The "old" host at 0.9 is a galaxy with an old bulge/bar but star formation in the fainter disk

 How about the differences for normal SNe with similar Dm15(B)?

UV colors grouped by host type

 No clear color differences , but sample size is still very small

 Host properties might not represent the progenitor

uvm2 absolute magnitudes grouped by host type

No clear color differences, but sample size is still very small Host properties might not represent the progenitor

UV colors grouped by host type

 No clear color differences, but sample size is still very small

 Host properties might not represent the progenitor

Still to do . . .

- Increase the sample to be less sensitive to a few peculiar SNe or hosts
- Quantify properties such as SFR, age, and metallicity of hosts and at position of SN
- Look for correlations of UV with spectroscopic properties of SN, eg Fe strength

UV light curves as a probe of progenitor companion

Rest Frame UV of high redshift objects will be observed in the optical

Grism Observations of SNe

Absolute Magnitudes in the UV

SN Ia Photons

More Swift SNe

This sample of UV curves from 5 years of Swift/UVOT observations is larger than that of 40 years of IUE and HST observations

Anonymous GRB060218 Z= 0.033 d= 145 Μρς				t _{end} : 36 days		
16. SN 2006X NGC 4321 Μ100 Z= 0.00524 σ= 21 Μpc	la	6		Status: complete t _{start} : -12 days t _{end} : 21 days Template image	<u>2006, ATel 762</u>	
15. SN 2006T NGC 3054	llb	• @		Status: complete t _{start} : 22 days t _{end} : 24 days		
	Internet					

8

Rest Frame UV at high z

SN 2005cs (IIP) Light Curves

(signature of the "Plateau" subtype)

Rapid UV fading common to SNe II

SED Modeling of SNe II

SED becomes redder with time as SN photosphere cools and metal lines absorb the shorter wavelengths (CMFGEN modeling by L. Dessart)

Shock Breakout of GRB060218/SN2006aj

SN2006aj – the "SN" bump

