Constraining the nature of CCSN (lb/c) with BPASS

John J Eldridge

In collaboration with Elizabeth Stanway, Monica Relano, Joe Walmswell, Norbert Langer, Stephen Smartt, Mark Crockett & Chris Tout.

BPASS?

- Binary Population and Spectral Synthesis
- Why unique?
- 15,000 detailed stellar evolution models.
- Almost all theoretical inputs.
- Use of Cloudy (Ferland et al.) for nebular emission.
- Note: we use a flat mass ratio distribution and flat in log separation distribution for binary parameters.
- Our motto? "If you need a number and no one else can help, maybe you can ask the BPASS-team."

BPASS

For more details:

- Eldridge, Izzard & Tout (2008) BSG/RSG, WR/O, RSG/WR?, WC/WN, N(Ib/c)/N(II).
- Eldridge & Stanway (2009) Colours of massive clusters, He(II) UV, Blue & Red WR bumps and spectra of H(II) regions.
- Coming soon, runaway stars, resolved/unresolved stellar populations, more on supernova progenitors and rotation in binaries....
- And don't take my word for it....

Brinchmann et al. (2008)

Note: both rotation and binaries are important.

Boissier & Prantzos (2009)

Note: both rotation and binaries are important.

Direct (non) detections?

Predicted WR magnitude distribution

Non-detection limits from Mark Crockett's thesis Eldridge, Crockett, Maund & Smart (in prep)

Relative Rates?

z	IIP	non-IIP	Ъ	Ic
Single				
0.008	0.761	0.095	0.064	0.081
0.020	0.742	0.096	0.017	0.145
0.040	0.609	0.209	0.010	0.172
Mix				
0.008	0.584	0.120	0.134	0.162
0.020	0.593	0.119	0.057	0.231
0.040	0.444	0.240	0.024	0.293
Binaries				
0.008	0.488	0.134	0.173	0.206
0.020	0.505	0.133	0.080	0.282
0.040	0.348	0.257	0.031	0.363
0.008 & 0.020	0.588	0.120	0.097	0.195
Smartt et al.	0.587	0.120	0.098	0.195

Eldridge, Crockett, Maund & Smartt (in prep) or Eldridge, Langer & Tout (in prep) Note: approx 30% of stripped SNe come from binaries, if massive WR stars produce no SNe display then need more binaries.

What about where a supernova goes off?

Observed supernova locations

Fruchter et al. (2006)

Runaways as Supernova Progenitors

Eldridge, Langer & Tout (in prep)

Model dwarf galaxy

Eldridge (in prep)

Model spiral galaxy

Eldridge (in prep)

Supernova and $H\alpha$ flux

IIPII-oIbIcGRBBPASS0.360.480.560.750.92Observed0.540.440.620.74

Data from James & Anderson (2006)

Summary

- Populations including binaries and/or rotation problematic due to diversity of possible evolution!
- Binaries are vital to consider when modelling a number of observables.
- Work in progress, this is only a first attempt, new improved models including rotation are planned.
- If you want a number/ spectrum email: jje@ast.cam.ac.uk
- But I know people are always shy to ask so data release is coming soon to **bpass.org.uk**

Problem: wide range of orbits to consider Case B Case A 💿

It's not just an effect to switch on/off, need to consider a wide range of possible initial separations & mass ratios, any difference evolutionary paths are possible. Note – rotation is also the same as needs a range of rotation periods.

Case C

Single star population Binary population Observations of ToIAB

What can a galaxy spectrum tell us?

What's so important about binaries?

Consider two stars in a binary...

H-envelope lost! Also secondary *may* accrete some mass

Bottom line – more hot stars either from removal of hydrogen envelope or from Secondary stars accretting material and becoming more massive & luminous.

WR galaxies from SDSS DR6 Brinchmann et al. (2008)
Models from Eldridge & Stanway (2009)
"+" Single star Population & "X" Binary Population

