Simplified ¹² C burning for simmering CO white dwarfs

Francisco Förster Burón, Pierre Lesaffre, Philipp Podsiadlowski

or... fast and accurate 12 C burning for pre-supernova CO WD models

Francisco Förster Burón, Pierre Lesaffre, Philipp Podsiadlowski

Overview

- 1. Path to SN Ia
- 2. Convective Urca process
- 3. Nuclear physics prior to ignition
- 4. Simplified networks
- 5. Results

1. Path to Type Ia Supernova

- Close binary system formation: CO WD + companion
- Mass transfer phase: accretion + shrinking + heating
- Hydrostatic ²C burning: energy release + ashes pollution
- Simmering phase: steep T gradient + strong convection
- C-flash: convective core growth + steep L gradient

FF's thesis (2009)

2. Convective Urca process

- Convection + high ρ_s : β -decays + e- captures in up and down moving flows.

- ν cooling originally thought to stabilize burning (Paczinski et al. 1970)
- Later shown that e⁻ captures cause heating (Bruenn 1973)
- Known to influence ρ , T and v_{conv} at ignition (Lesaffre et al. 2005, 2006)
- Numerically challenging (Iben 1978), known unknown in pre-SN la theory

Convective Urca process

FF's thesis (2009)

Stancliffe et al. 2006

Need simultaneous solver of structure and chemistry of the star.

3. Nuclear physics

- Burning prior to ignition: approximately six ¹² C nuclei become ²⁰ Ne, ²³ Na, ¹⁶ O and ¹³ C, with one or two electron captures (Piro et al. 2008)

FF's thesis (2009)

4. Simplified networks

Four time-scales in the problem:

FF's thesis (2009)

Simplified networks: leak reactions

When pollution by 12 C ashes occurs, all trace nuclei are affected by leak reactions — need detailed reaction network (Chamulak et al. 2008)

Detailed reaction network

Flows at fixed ρ , T 4e8 K, 3e9 g cm⁻³

5. Results

Abundances

Time evolution

Energy generation

Conclusions & Discussion

- Basics of ²C burning prior to ignition understood (Piro et al. 2008, Chamulak et al. 2008 and *this work*)
- New tool for stellar evolution calculations of the convective Urca process. Potential application in 3D simulations!
- Two networks introduced, N1 and N2. N1 offers basic estimation of most quantities, N2 is 5% accurate.
- ²¹ F or other nuclei can be included to include higher density e- captures if more accuracy were required.
- Presupernova evolution should be used to explain systematic differences with environment (e.g. talks by J. Anderson or M. Sullivan). Convective Urca process is important ingredient.

Two simplified networks: N1 and N2

N1. Six independent species: ¹² C, ¹³ C, ¹⁶ O, ²⁰ Ne, ²³ Na, ²³ Ne. Straightfoward trace nuclei abundances give very simple analytic formulae, e.g.

$$\frac{dY(^{13}C)}{dY(^{12}C)} = -\frac{1}{3(1 + \lambda_2/\lambda_1)} \approx -0.15,$$

$$\frac{dY(^{16}O)}{dY(^{12}C)} = -\frac{1}{3(1 + \lambda_1/\lambda_2)} \approx -0.19,$$

$$\frac{dY(^{20}Ne)}{dY(^{12}C)} = -\frac{1}{3(1 + \lambda_1/\lambda_2)} \approx -0.19.$$

N2. One additional nuclei: ²¹ Ne. Implemented with correction factors to N1, measure contribution of leak reactions, e.g.

$$\tilde{Y}(p) = \bar{Y}(p) f_{\rm p},$$
 $\tilde{Y}(\alpha) = \bar{Y}(\alpha) f_{\alpha},$ $\tilde{Y}(n) = \bar{Y}(n) f_{\alpha} f_{\rm p},$ $\tilde{Y}(^{13}N) = \bar{Y}(^{13}N) f_{\rm p},$

