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Overview
•Presupernova Evolution 
•Varieties of Stellar Deaths

•Uncertianties
•Nucleosynthesis



Evolution of 
central 
density and 
temperature 
of 15 MꙨ

and 25 MꙨ 
stars

Once formed, the evolution of a star is governed by gravity: 
 continuing contraction 

to higher central densities and temperatures

Once formed, the evolution of a star is governed by gravity: 
 continuing contraction 

to higher central densities and temperatures
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Fuel Main
Product

Secondary
Product

T
(109 K)

Time
(yr)

Main 
Reaction

H He 14N 0.02 107 CNO

4 H   4He

He O, C 18O, 22Ne
s-process

0.2 106 3 He4   12C
12C( α,γ )16O

C  Ne,
 Mg

Na 0.8 103 12C + 12C

Ne O, Mg Al, P 1.5 3 20Ne( γ ,α)16O 
20Ne( α,γ )24Mg

O Si, S Cl, Ar,
K, Ca

2.0 0.8 16O + 16O

Si,S Fe Ti, V, Cr,
Mn, Co, Ni

3.5 0.02 28Si( γ ,α)…

Nuclear burning stages
(20 MꙨ stars)



net nuclear energy generation (burning + neutrino losses)

net nuclear energy loss (burning + neutrino losses)

convection semiconvection
total mass of star
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convective envelope (red super giant)
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Boom!

Bang!



Explosive Nucleosynthesis
in supernovae from massive stars



Things that blow up
supernovae

• CO white dwarf  Type Ia SN, E≈ 1Bethe
• MgNeO WD, accretion  AIC, faint SN
• “SAGB” star (AGB, then SN)  EC SN
• “normal” SN (Fe core collapse)  Type II SN
• WR star (Fe CC)  Type Ib/c
• “Collapsar”, GRB  broad line Ib/a SN, “hypernova”
• Pulsational pair SN  multiple, nested Type I/II SN
• Very massive stars  pair SN,≲100B (1B=1051 erg)
• Very massive collapsar  IMBH, SN, hard transient
• GR He instability  >100 B SN+SMBH, or 10,000 B
• Supermassive stars  ≳100000 B SN or SMBH

M
A

SS

1B=1051 erg

http://images.google.com/imgres?imgurl=http://www.kosmologika.net/Scientists/Bethe_big.jpg&imgrefurl=http://www.kosmologika.net/Scientists/Bethe.html&h=600&w=424&sz=60&tbnid=sBBxWAZkAxTHOM:&tbnh=133&tbnw=93&hl=en&ei=ekcXRNH5MMyAQ6zz7O0N&sig2=XPnrOczubYKECFwM3KqrRw&start=3&prev=/images?q=hans+bethe&svnum=10&hl=en&lr=


  

Energy Scales
Log E Explosion Thermonuclear

39 X-ray Bursts √

40 Long-Duration He Bursts √

41

42 X-ray Superbursts √

43

44

45

46 Classical Novae √

48 Faint SN (visible LC?)

49 SN (visible LC)

50 Bright SN (LC?)

51 SN (kinetic) SN Type Ia total

52 Hypernova? GRB? Pair-SN total (low-mass end)

53 SN (neutrinos – several 1053erg) Pair-SN total (upper limit)

54 (a lot of energy - 0.5 MꙨ c
2)

55 GR He SN GR He SN (upper limit)

56 GR H SN, Z > 0 (Fuller et al. 1986) √ 
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Nathan Smith, 2007, First Stars III

Mass Loss due to Giant Eruptions?

How do the most massive 
stars evolve?

● Reduced mass loss on the main sequence followed 
by LBV & giant eruptions?

● What are these eruptions?  
(physics, number, recurrence)

● When do they occur? 
(internal evolution stage?)

● How do we model these eruptions?
● Pulsational Pair-Instability Supernovae (PPSN)?



  

star disk

Mass Loss due to Critical Rotation

ANGULAR MOMENTUM

mass

● How important is mass loss due to critical (or fast) rotation? 
● How do we quantify mass loss and angular momentum loss?
● How does it effect our stellar models?

(Langer, Meynet, Maeder, Hirschi,...)



  

Z=0.001

Black Holes 
and GRBs from 
Rotating Stars 

(Yoon & Langer 2006)

(Yoon & Langer 2006; 
data from Mokeim et al. 2006) A small fraction of single stars is 

born rotating rapidly

The fastest rotators evolve 
chemically homogeneously, 
become WR stars on the MS, and 
may lose less angular 
momentum.
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Sun 2.0



Sun 3.0



Sun 3.0



AG89

Lo03

Lo09

15 solar mass star 
yields for different 
initial abundances

●over-all pattern remains 
remarkably consistent

●but details details in weak 
s-process pattern do exists

●sensitivity to nuclear reaction 
rates and model physics can 
be well established for 
specific stellar models 



25 solar 
mass star 
s-process
yields for 
different 
evolution
stages
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Light Isotope Yields - 12C(α,γ)16O

(Tur, Heger, Austin 2008)



25 solar mass star: central values

(Tur, Heger, Austin 2008)



Central Carbon Mass Fraction

(Tur, Heger, Austin 2008)



Remnant Masses – NS or BH?

(Tur, Heger, Austin 2008)



He He

Si Si

[Z]=0 (solar) Z=0 (primordial)

Simulations: Candace Joggerst (UCSC/LANL T-2)

Growth of
Rayleigh-Taylor 
instabilities

Interaction of 
instabilities (mixing) 
and fallback 
determines 
nucleosynthesis 
yields

  Pop III stars 
show much less 
mixing than modern 
Pop I stars due to 
their compact 
hydrogen envelope 

Mixing in 25 MꙨ Stars



Fallback 
and 

Remnants

(Zhang, Woosley, Heger 2007)

Pop III

25 MꙨ

Pop I

Pop I

Pop III

  Pop III stars show 
much more fallback than 
modern Pop I stars due 
to their compact 
hydrogen envelope 



Supernovae, Nucleosynthesis, & Mixing

SN + mixing SN, no mixing 



Pop III Nucleosynthesis
Elemental Yields
as a function of 
initial mass

non-rotating stars

120 stellar masses

“complete” 
reaction network

normalized to Mg

RESULTS:
e.g.,
Production of 7Li 
by neutrino 
interaction in very 
compact stellar 
envelope!

Mg yield (ejecta mass fraction)

20 30 40 50

Heger & Woosley, in prep., (2010)



Pop III Star Core Masses



(Zhang, Woosley, 
Heger 2007)

Pop III Stars

Much fallback 
for compact 
stars (“+”) 

Less fallback 
for RSG (“Δ”)

2.4 B 1.2 B 0.6 B



Pop III Star Remnant Masses
(from Zhang, Woosley, Heger 2007)
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net nuclear energy generation (burning + neutrino losses)

net nuclear energy loss (burning + neutrino losses)

convection semiconvection
total mass of star
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Summary
● Uncertainties in stellar and supernova 

physics (and variations of author's choices) 
limit association of progenitor mass and 
supernova and remnant.

● Outcome of stellar evolution is not “smooth” – 
due to physics of shell burning – not even 
with ideal numerical implementation & physics

● Degeneracy of unknown initial parameters – 
rotation, composition, binarity.

● Stellar and supernova “weather”?
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