IAP Col. 2010 The quest for the supernova-la delay function Dan Maoz

Progenitors?

"single degenerate" ("SD") (Whelan & Iben 1974)

"double degenerate" (Webbink 1984; Iben & Tutukov 1984)

Clues to progenitors can be obtained by measuring <u>SN Rates</u>

SN Ia "delay time distribution":

the hypothetical SN Ia rate vs. time following a short burst of star formation.

How to recover the delay time distribution

I. SN Rates vs. galaxy "age"

A first crack at the delay function (Mannucci et al. 2005): compare SN rate in blue ("young") and red ("old") galaxies.

some SNe-Ia : "prompt" (<0.5 Gyr)

and

some SNe-la "delayed" (~5 Gyr)

"A+B" model (Mannucci+05; Scannapieco & Bildsten 05; Sullivan+ 06)

SN rates in E galaxies at z=0.4-1.2

Similar results by Okumura+ for non-E galaxies.

How to recover the delay time distribution

II. SN Rates vs. individual galaxy star-formation histories

Maoz, Mannucci, et al. 2010

SNe from Lick Observatory SN Search (Filippenko, Li) in nearby galaxies, with SDSS spectra and SFH reconstructions (Tojeiro+09)

Similar method applied by Brandt+2010 to SDSS II, similar results.

How to recover the delay time distribution

III. SN remnants in the LMC+SMC, viewed as a SN survey

Sample of 77 SN remnants in the Clouds

Badenes Maoz Draine 2010

Star-formation histories in 1836 individual LMC/SMC "cells", from resolved stellar populations. Harris & Zaritzky 2004, 2009

Maoz & Badenes 2010

SN remnants in the Magellanic Clouds and SFHs from resolved stellar populations

How to recover the delay time distribution

IV. SN rates in galaxy clusters

Cluster SN rate measurements

z~0.1: Wise Obs. 1m

Gal-Yam et al. (2008) Sharon et al. (2007)

Cluster SN rate measurements

z~0.6:

HST

Sharon, Gal-Yam, et al. (2010)

Maoz, Sharon, Gal-Yam (2010)

See also poster by K. Barbary

Time-integrated # of SNe-Ia must produce observed mass of Fe in clusters

Maoz, Sharon, Gal-Yam (2010)

SN rates in galaxy clusters + iron/star mass ratio

Time-integrated # of SNe-Ia must produce observed mass of Fe in clusters

Maoz, Sharon, Gal-Yam (2010)

SN rates in galaxy clusters + iron/star mass ratio

Maoz, Sharon, Gal-Yam (2010)

Time until merger (gravitational wave losses):

$$t \sim a^4$$
.

If the separations are distributed as a power law

$$\frac{dN}{da} \sim a^{\epsilon},$$

then the event rate will be

Т

$$\frac{dN}{dt} = \frac{dN}{da}\frac{da}{dt} \sim t^{(\epsilon-3)/4}.$$

How to recover the delay time distribution

V. SN rates vs. redshift in field, compared to cosmic SFH

HST/ACS GOODS (~700 orbits) Riess, Dahlen, Strolger et al. 2004-2008, ~80 SNe, 46 SNe-Ia, 24 @ z>1

Peak in SN-Ia rate at z~0.8 implies τ > 3 Gyr; inconsistent with other DTD estimates.

GOODS: no prompt, no delayed, only "intermediate" (4Gyr) SNe la

Strolger et al. 2004

High-z SN rates in the Subaru Deep Field

Poznanski et al 2007, Graur et al., in prep.

- 4x(2-night) runs
- Stare at the 0.25 deg² SDF:
 r, i ~ 27 mag z ~ 26 mag

SNSDF0503.07, z=0.67

April 2002 March 2005

005 Differenc

Every epoch adds ~40 SNe:

After 4 successful runs in 2005 - 2008: 150 SNe.

Graur et al., in prep.

Summary:

Many different ways to try to get the delay function:

- 1. Traditional ways:
- a. SN rates in populations of different mean ages
- b. SN rate vs. cosmic time, compared to SFH

2. Novel ways:

- a. SN rate in clusters vs. cosmic time
- b. SN rate vs. SFHs in individual galaxies

c. SN remnants vs. SFHs of individual cells of a single galaxy.

Emerging Picture:

- * Wide distribution of delay times, looks like ~ t $^{-1}$.
- * >1/2 of SNe-Ia prompt (< 1 Gyr)
- Shape like DD model, but 5-10X more SNe Ia than in binary population synthesis.

Future:

- 1. Deep SN remnant surveys in additional nearby galaxies (M31).
- 2. SN rates out to z>2 with HST WFC3
- 3. Better SFHs for galaxies monitored in already existing SN surveys

Star-formation history (z)

SN delay time distribution (t)

How long, in principle, can we see a SNR?

Badenes, Maoz & Draine (2010): Visibility time of SNRs in Magellanic Clouds = lifetime of Sedov-Taylor phase $\sim E_0^{1/4} \rho^{-1/2}$

ambient density

HST/ACS GOODS (~700 orbits) Riess, Dahlen, Strolger et al. 2004-2008, ~80 SNe, 46 SNe-Ia, 24 @ z>1

2002fv

N

2002fw

With the new HST-WFC3--Potential for SNe out to z~2.5:

Two approved HST MC Treasury programs

(1400 orbits) p

predictions by K. Sharon

Iron in clusters (ICM+stars) easy to detect and to deduce total iron mass.

Balestra et al. (2007)

Maughan et al. (2008) (but see Ehlert & Ulmer 2009)

Iron yields of individual SNe known directly from observations (e.g., Mazzali et al. 2007):

SN-Ia: M(Fe)=0.7 Msun

Dawson+2009, survey for SNe in clusters at 0.9<z<1.4

expect. value visibility time

$$\lambda_i = r_i t_i,$$

$$P(n_i|\lambda_i) = (e^{-\lambda_i}\lambda_i^{n_i})/n_i!$$

Subsample of LOSS:

3505 galaxies with SDSS spectra, star-formation history reconstructions by Tojeiro+2009

...and different environments can make different la's

Howell et al. 2009

Formation Efficiency of SNe-la

If "prompt" SNe-Ia explode within 400 Myr:

then

Primary star must be > 3 Msun

What fraction of all stars with m_{init}=3-8 M_{sun} go SN-Ia?

De Plaa et al. 2007

ICM abundances: $N_{Ia}/N_{CC} \sim 1$

$$\eta_{
m abnd} = rac{N_{
m Ia}}{N_{
m CC}} \, rac{\int_8^{50} \phi(m) dm}{\int_{m 3}^{m 8} \phi(m) dm}$$

~ 30%

What fraction of all stars with m_{init}=3-8 M_{sun} go SN-Ia?

Maoz 2008

Method (1)	$\eta(\%)$ (2)	Reference (3)
Ia/CC	8 - 15	Mannucci et al. (2005)
B	5-7 8-10 6-18 3-9 1-1.5 3.8-4.3	Dahlen et al. (2004) Barris & Tonry (2006) Scannapieco & Bildsten (2005) Scannapieco & Bildsten (2005) Sullivan et al. (2006) Mannucci et al. (2006)
Л	$egin{array}{c} 0.8-1.7\ 1-1.5\ 2-6\ 2-3.5 \end{array}$	Mannucci et al. (2005) Sullivan et al. (2006) Sharon et al. (2007) Mannucci et al. (2007)
Fe	11 - 20	Lin et al. (2003)
Abund	14 - 40	De Plaa et al. (2007)

Maoz 2008

~10-20% of all m=3-8 Msun stars explode as SNe-Iabut.....

- \div 0.7-1 are in binaries;
- \div 0.15–0.3 have secondaries that are not too small
- \div 0.25–0.5 have close enough separations
- + 0.5 : every binary can make just 1 SN-Ia!

~100% to 1000 % of close, intermediate-mass, binaries end up as SNe-Ia !

A heretical idea:

Could SNe-Ia have single-star progenitors?

K. Williams (2008)

Binary population synthesis predictions: Yungelson, Tutukov, Livio: DD: only 14% of close 3-8 Msun binaries go SNIa SD: ~1%

Han & Podsiadlowski 2004: SD MS channel: B=(1-2) x 10⁻⁴ / Msun Hachisu RG channel: ne gligible

Dependence of SN rate on environment? (Mannucci et al. 2007):

E+S0 SNR_{Ia}(z=0)=0.038^{+0.014}-0.012</sub> SNuM (Mannucci et al. 2005) 0.066 SNuM in clusters (11 SNe)

0.019 SNuM in field (5 SNe)

How to measure a SN rate?

