Relic Proto-Stellar Disks as an Origin of Circumstellar Interaction in Core Collapse SNe (astro-ph/1004.4215)

Brian Metzger
NASA Einstein Fellow (Princeton University)

IAP Colloquium: "Progenitors & Environments of Stellar Explosions" 06.29.10

Very Luminous Core Collapse Supernovae

SN 06gy (Ofek+07; Smith+07,09,10), 06tf (Smith+08), 05ap (Quimby+05), 03ma (Rest+09), 07bi (Gal-Yam+09), 08fz (Drake+09), 08es (Gezari+09; Miller+09), 08iy (Miller+10), SCP 06F6 (Barbary+09), "PTF Events" (Quimby+09)

- Bright: Peak Luminosities (M_{peak} ~ -21 to -23)
- Energetic: E_{rad} up to ~ 10⁵¹ ergs
- Some (but not all) show bright, narrow H emission ("Type IIn")
- Rare: ~10⁻⁴ to 10⁻² of Core Collapse SNe
- Related Oddballs? "Hybrid" Type I-IIn SN 2002ic (Hamuy et al. 2003) and 2005gj (Aldering et al. 2006; Prieto et al. 2007)
 - Type la into AGB-like Companion? (Livio & Riess 2003)
 - Type Ic Core Collapse into H-rich envelope? (Benetti et al. 2006)

Why so Bright?

Photon
Diffusion Time

$$t_{diff} \sim \tau R/c$$

Expansion Time

$$t_{exp} \sim R_V$$

Ideal Radius for Bright Emission

$$R_{\text{peak}} \sim 100 \text{ AU} \left(\frac{v_{\text{SN}}}{10^4 \text{ km s}^{-1}} \right)^{1/2} \left(\frac{M_{\text{SN}}}{10 M_{\odot}} \right)^{1/2}$$

Late-Time Energy Sources:

- Anomalously Large ⁵⁶Ni Yield

 (e.g. "hyper-novae" or pair instability Sne; e.g. Gal-Yam+ 09)
- Magnetar Spin-Down (Kasen & Bildsten 09; Woosley 09)
- Circumstellar Interaction (Shock Heating)
 - Very Luminous SNe require M_{CSM} ~1-10 M_⊙
 at radii R ~ few hundred AU

Pre-Supernova Eruptions?

(e.g. Gal-Yam+05; Smith+07; Woosley+07)

- $\Delta T_{\text{ejection}} \sim 1-10 \text{ years}$
- Requires Correlation between Eruption and Core Collapse
 - ⇒ 1) instability associated w late evolutionary stages or 2) delay btw pair instability pulsations (Woosley+07)

Pre-Supernova Eruptions?

(e.g. Gal-Yam+05; Smith+07; Woosley+07)

- $\Delta T_{\text{ejection}} \sim 1-10 \text{ years}$
- Requires Correlation between Eruption and Core Collapse
 - ⇒ 1) instability associated w late evolutionary stages or 2) delay btw pair instability pulsations (Woosley+07)

(Lin & McCray 93)

- Low mass proto-stellar disks live ~few Myr, similar to lifetimes of very massive stars
- Eliminates "coincidence" problem (CSM was always there)
- Hydrogen-rich CSM, even if progenitor not

Krumholz et al. 2007

Massive Star Formation

2. Isolated Disk Evolution & Dispersal (t > 10⁵ yr)

 $M_{disk} \sim 0.1 M_{\star}$ $R_{disk} \sim 10^2 - 10^3 \text{ AU}$

Conditions for Disk Formation & Survival around Massive Stars (BDM 2010)

Not Too Hot: $T > 10^3 \text{ K} \Rightarrow \text{Dust Sublimation /}$ Thermal-Ionization Activates MRI

Not Too Cool: Gravitational Fragmentation

⇒Binary Companion(s) when $t_{cool} < \Omega^{-1}$ (Gammie 2001)

Ionization Shielding ($\Sigma > \Sigma_{cr} \sim 100 \text{ g cm}^{-2}$)

⇒ Magneto-Rotational Instability Suppressed

Accretion Time vs. Stellar Lifetime t_{life}~3-10 Myr

(for "suppressed" viscosity $\alpha = 10^{-3}$; Fleming & Stone 2003)

Photo-Evaporation (Hollenbach et al. 1994; Shu et al. 1993)

Photo-Evaporation (Hollenbach et al. 1994)

Similar to Inferred CSM Radii in VLSNe + $R_{peak} \sim 100 \text{ AU} \left(\frac{V_{SN}}{10^4 \text{ km s}^{-1}} \right)^{1/2} \left(\frac{M_{SN}}{10 M_{\odot}} \right)^{1/2}$

Supernova Shock-Disk Interaction

➤ Radiative Efficiency: 10-20% (Disk Solid Angle)

Velocity Components:

▶ Broad ~ 10⁴ km/s(SN Ejecta)

➤ Intermediate ~ few 10³ km/s (Shocked Disk)

➤ Narrow ~ 10²-10³ km/s (Unshocked Disk & Stellar Winds

(similar to model of Chugai & Danziger 1994)

Disk Photon Diffusion Vs. Ejecta Expansion Time ⇒ Bright Type IIn SNe Vs. *non-*IIn VLSNe

Prediction:

Long-Lived Disks around Very Massive Stars

- Relic disks should be observationally conspicuous
 - Luminous IR (and probably $H\alpha$) excess
- But in most systems, disk won't survive...
 - e.g. Binary companion, stellar collisions, etc.
 - Average compact HII region lifetime ~10% stellar lifetime (e.g. Churchwell et al. 1989; Churchwell 2002)
- Progenitors of Very Luminous SNe are rare
 - If VL-SNe constitute $\sim 10^{-3(4)}$ of CC SNe, then only $\sim 3(30)$ progenitors alive now in Milky Way
 - Relic disks *not* the progenitors of all IIn (e.g. Yoon & Cantiello 2010)
- Local census of massive stars is incomplete
 - Observationally challenges (resolution, confusion, etc.)
 - How to distinguish "proto-star" from "evolved star + disk"

Conclusions

- In most systems proto-stellar disk are dispersed, but survival may be possible for a subset of *the highest mass stars*
 - Massive stars have short lifetimes
 - Massive star ⇒ massive disk ⇒ shielding from external ionization ⇒ slow accretion
 - Deep potential well ⇒ photo-evaporation ineffective
- If a disk does survive...
 - Likely to be massive with...
 - Typical radius ~ few $10^2 AU \Rightarrow Ideal$ for CSM interaction
 - Several Potential Sources of Narrow Line Emission