



# Dust in PDRs with Herschel: the Orion Bar

## <u>H. Arab</u>, A. Abergel, E. Habart, J. Bernard-Salas, H. Ayasso and the SPIRE ISM consortium

## Institut d'Astrophysique Spatiale

**Dust in the Orion Bar** 

**H.Arab** 

**Key project : Evolution of interstellar dust** 

**Survey of the properties of interstellar dust with different conditions** Av, Illumination, Density, History, Star forming activity

**To look at the contribution of all processes acting on dust particles** Fragmentation, Coagulation, Condensation, Evaporation, Photo-processing

From very diffuse regions to sites of star formation in the Milky Way

**Combination of spectroscopy and mapping (PACS and SPIRE)** Dust SED : Continuum Physical conditions : mainly CI, CII, OI, high-level lines of CO

**Strong emphasis on the spatial information within individual objects** 

**Dust in the Orion Bar** 

**H.Arab** 

## **Photodissociation regions (PDRs)**

Regions dominated by radiation Radiation field intense enough to dissociate molecules without ionizing H Interface between HII regions and molecular clouds



**Dust in the Orion Bar** 

**H.Arab** 

## **DustEM model**

Numerical tool described in Compiegne et al. (2011) computes dust extinction and emission available at <u>http://www.ias.u-psud.fr/DUSTEM/</u> Diffuse High Galactic Latitude dust model:



3 dust components:

- PAH
- Hydrogenated amorphous carbon
- Astronomical silicates

**Dust in the Orion Bar** 



## **The Orion Bar**

Part of M42 (Orion Nebula)

d = 414 pc (Menten et al. 2007)

Radiation field : Trapezium stars mainly  $\theta^1$ Ori C (O6)  $[1-4] \times 10^4 G_0$ Marconi et al. (1998) Tielens & Hollenbach (1985)



HST – WFPC2 Blue: V band, Green: [OIII], Orange: Hα, Red: [NII]

Many studies and papers...

**Dust in the Orion Bar** 

**H.Arab** 

## **The Orion Bar**

Part of M42 (Orion Nebula)

d = 414 pc (Menten et al. 2007)

Radiation field : Trapezium stars mainly  $\theta^1$ Ori C (O6V)  $[1-4] \times 10^4 G_0$ Marconi et al. (1998) Tielens & Hollenbach (1985)

Many studies and papers...

Lis et al. (2003) Red: OI 1.32 μm; Black: H<sub>2</sub> v=1-0 S(1); White: <sup>13</sup>CO (3-2), Blue: H<sup>13</sup>CN (1-0)

**Dust in the Orion Bar** 

**H.Arab** 







Arab et al. (in prep)

**Dust in the Orion Bar** 

**H.Arab** 



J. Bernard-Salas et al. (in prep)

#### **Dust in the Orion Bar**

**H.Arab** 



Habart et al. (in prep)

#### **Dust in the Orion Bar**

**H.Arab** 

#### Herschel's beams



Computing transition PSFs from PSF<sub>1</sub> to PSF<sub>2</sub> Regularized least-square method



**Dust in the Orion Bar** 

**H.Arab** 

#### **BGs spectrum**







Aim: Underline the evolution of dust properties and abundances within the PDR

Approach: To model the brightness profiles at each wavelength using dustEM coupled with a radiative transfer code.



Aim: Underline the evolution of dust properties and abundances within the PDR

Approach: To model the brightness profiles at each wavelength using dustEM coupled with a radiative transfer code.



#### **Density profile:**



 $l_{PDR} = 0.46 \text{ pc} \iff N_{H} = 2.10^{23} \text{ cm}^{-2}$  (at the density peak)

**Dust in the Orion Bar** 

**H.Arab** 

Cloudy model and comparison with PACS spectroscopic data



Bernard-Salas et al. (in prep)

**Dust in the Orion Bar** 

**H.Arab** 



**Dust in the Orion Bar** 

**H.Arab** 

- Good agreement in the BG emission range.

- The small underestimate at 160 and 250  $\mu m$  can be explained by a  $\beta$  emissivity index too low in the model (1.5 in dustEM whereas 1.8 in the data.

- Strong overestimate at 8 microns.

Abundance variations ?



**Dust in the Orion Bar** 

**H.Arab** 

- Good agreement in the BG emission range.

- The small underestimate at 160 and 250  $\mu$ m can be explained by a  $\beta$  emissivity index too low in the model (1.5 in dustEM whereas 1.8 in the data).

- Strong overestimate at 8 microns.

Abundance variations ? YES given the huge radiation field (Giard et al. 1994) but cannot explain a factor 45.

- Good agreement in the BG emission range.

- The small underestimate at 160 and 250  $\mu$ m can be explained by a  $\beta$  emissivity index too low in the model (1.5 in dustEM whereas 1.8 in the data).

- Strong overestimate at 8 microns.

Abundance variations ? YES given the huge radiation field (Giard et al. 1994) but cannot explain a factor 45.

**BG** emissivity variations ? MAYBE. Coagulation can increase the emissivity and induce an overestimate of  $l_{PDR}$ .

- Good agreement in the BG emission range.

- The small underestimate at 160 and 250  $\mu$ m can be explained by a  $\beta$  emissivity index too low in the model (1.5 in dustEM whereas 1.8 in the data).

- Strong overestimate at 8 microns.

Abundance variations ? YES given the huge radiation field (Giard et al. 1994) but cannot explain a factor 45.

**BG** emissivity variations ? MAYBE. Coagulation can increase the emissivity and induce an overestimate of  $l_{PDR}$ .

Variation of l<sub>PDR</sub>? CERTAINLY given the geometry

## **Conclusion and perspectives**

Herschel data complete the large dataset on the Orion Bar.

Bring new constraints on the structure of this PDR.

But the Orion Bar is an extreme case complicated by huge  $G_0$ , density and geometrical effects.

Apply this kind of study on other objects of various properties to understand the dust properties.

Thank you ...

#### **Interstellar dust**

Evolution: Size, structure and chemical composition modification (Erosion, fragmentation, condensation, coagulation) Size distribution of interstellar grains



**Dust in the Orion Bar** 

**H.Arab** 

#### **Interstellar dust**

- Absorb the UV / visible radiation and re-emit it in the IR / sub-mm
- Allow molecular formation in the ISM
- Hold a large part of the elements heavier than hydrogen
- Contribute to the gas heating (photoelectric heating)
- Crucial component in the stellar and planetary formation

**Formation**: Dominated by the input form evolved stars (RGB/AGB and Supernovae ?)



**Dust in the Orion Bar** 

**H.Arab** 

#### Herschel's beams



#### Herschel's beams



- More satisfactory than Gaussian convolution (especially at the edge of bright structure)

- Better reconstruction of k than Fourier deconvolution respecting the balance between spectral information and the level of noise

#### **Dust in the Orion Bar**

#### **H.Arab**

#### **BGs spectrum**



PDR from  $\approx 60$  K to 30 K

**Dust in the Orion Bar** 

**H.Arab** 



SPIRE/FTS spectrum at the peak position

**Dust in the Orion Bar** 

**H.Arab**