Evidence for a UV bump of moderate amplitude in the attenuation curve of high redshift galaxies

Véronique Buat, Elodie Giovannoli, Sébastien Heinis and the GOODS-Herschel team

From dust to galaxies-IAP-27-01 june 2011

Attenuation & extinction laws in galaxies

They are different because of absorption & scattering of photons on dust particles

Witt & Gordon 2000

Attenuation curves of external galaxies: UV range Is there any bump at 2175 A?

Calzetti et al. 94, 00: from spectroscopic data

no bump in local starburt galaxies, moderate rise in UV In local galaxies: GALEX UV bands and u(SDSS) well suited to test the presence of the bump

At low z: some evidence for a bump in local star forming galaxies from broad band analyses

Similar conclusion by Wild et al 11 but see also Wijesinghe et al. 2010, Johnson et al. 2007

Composite spectrum 1.5<z<2.5: evidence for a bump *Noll et al. 2009*

But no evidence for a bump in Lyman Break Galaxies at $z \approx 2$ (Vijh et al. 03, Reddy et al. 08)

Gamma-Ray burst afterglow to probe the extragalactic dust

Some evidence for UV bumps, wide diversity of extinction laws Liang & Li, 2009, 2010

UV bumps also detected in dusty QSO intervening systems

 \rightarrow Pasquier Noterdaeme's review

Our approach

To work at high z to redshift the UV range in the visible
To combine optical (UV rest-frame) and far-IR data: strong constraint on SFR and dust attenuation

•To use intermediate band filters in optical to tightly sample the UV rest frame

Working in the CDFS combining Herschel/PACS (GOODS-Herschel project) and Subaru/MUSYC broad and intermediate band filters (Cardamone et al. 2010) +IRAC & MIPS data (Dickinson et al. 2003)

GOODS-Herschel project P.I. D. Elbaz

GOODS-N: 10'x15' PACS+SPIRE, 100, 160, 250, 250, 500 μm 1 mJy @ 100 μm GOODS-S: 10'x10' PACS 100,160 μm down to the confusion limit at 100 μm ~0.7 mJy

GOODS_N, Spitzer IRAC & MIPS, Elbaz et al 2011 A&A

Herschel/PACS

Herschel/SPIRE

Selection of the sources with 1<z<2 to sample the region of the UV bump

Our sample:

30 sources (28 with spec-z) in the GOODS-S field with 1 < z < 2 and high SNR in all bands: SNR > 5 in optical, NIR, mid-IR and at 100 μ m, SNR > 3 at 160 μ m: 30 photometric bands (12 intermediate band filters)

 \rightarrow SED fitting process applied to the whole SED (UV-to-farIR) <A(FUV)> = 3.1 ± 1.1 mag <A(V)> = 0.9 ±0.4 mag

CIGALE : Code Investigating GALaxy Emission

P.I. D. Burgarella (Noll et al. 2009) <u>http://www.oamp.fr/cigale/</u>

see also Elodie Giovannoli's poster

A physically-motivated code:

CIGALE combines a UV-optical SED & a dust IR emitting component: Energetic balance fully conserved between stellar and dust emission.

INPUT PARAMETERS:

- •Photometric data +errors
- •Star Formation Histories
- •Dust attenuation curves
- •IR libraries

OUTPUT PARAMETERS : All based on a Bayesian analysis

- input parameters
- Stellar Mass
- •Dust luminosity
- •Amount of obscuration
- •D4000 break, slope of the UV

continuum....

-STELLAR COMPONENT: two populations

Populations synthesis models of Maraston 2005

DUST ATTENUATION: different amount for the young and the old stellar population

Various mid and far-IR libraries

Dale & Helou (2002)

64 templates

Siebenmorgen & Krügel (2007)

~7000 SEDs

Chary & Elbaz (2001)

105 templates

Library of modified Black bodies

Now : β =1.5, *Tdust varies*

several β and Tdust: collaboration with the Herschel Reference Survey Team, nearby universe

$$= 1.26 \pm 0.30$$

 $MW: E_b^{MW} = 3.52 \rightarrow E_b \approx 0.35 E_b^{MW}$
 $LMC2: E_b^{LMC2} = 1.63 \rightarrow E_b \approx 0.76 E_b^{LMC2}$

 δ = -0.13 ± 0.12 δ = 0 , Calzetti et al. 00

Decrease of the amplitude of the bump when SSFR increases (see also Wild et al. 11) \rightarrow

Destruction of bump carriers in extreme physical environments?

Xray galaxies (7 sources): lower amplitude of the bump if any, steep attenuation curve

General shape of the average attenuation curve consistent with that of Charlot & Fall and (marginally) with that of Calzetti et al.

on top of which there is a bump at 2175 A whose amplitude is 35% (76%) that of the MW (LMC2) one.

Width of the feature: 356 Å (437 Å for the MW)

 $\frac{A(\lambda)}{A_{\rm V}} = \frac{k'(\lambda) + D_{\lambda_0,\gamma,E_{\rm b}}(\lambda)}{4.05} \left(\frac{\lambda}{\lambda_V}\right)^{-0.13}$ (3)

where $\lambda_V = 5500$ Å, $k'(\lambda)$ is given in Calzetti et al. (2000) (Eq.4) and

$$D_{\lambda_0,\gamma,E_b}(\lambda) = \frac{1.26 \times 356^2 \lambda^2}{(\lambda^2 - 2175^2)^2 + \lambda^2 \times 356^2}$$
(4)

IRX (L_{IR}/L_{UV})- β relation

Influence of the bump on the determination of the so-called UV slope with broad band filters

$$f_{\nu} \propto \lambda^{lpha} \propto \lambda^{eta+2}$$

 $\begin{array}{l} \pmb{\alpha}_{ref}: \text{UV slope (data points excluding} \\ \textbf{1975-2375 Å)} \\ \alpha_{13} \text{ with B1 and B3} \\ \alpha_{12} \text{ with B1 and B2} \\ \alpha_{23} \text{ with B2 and B3} \end{array}$

Rest-frame wavelength (Angstroem)

Summary: Main properties of the sample

Sample of 30 galaxies with <z> =1.3 ±0.3, observed in 30 photometric bands from U38 to 160 μm
SED fitting with CIGALE
Mean dust attenuation of the sample: <A(FUV)> = 3.1 ± 1.1 mag <A(V)> 0.9 ±0.4 mag

•Evidence for a bump at 2175 A in the attenuation curve of these galaxies whose amplitude is 35% (76%) that of the MW (LMC2) extinction curve

•UV rise slightly steeper than that of the Calzetti et al (2000) attenuation curve

•Our galaxy sample follows the IRX- β relation found for local starbursts when the bump area is avoided to calculate β .

BUT departures of 0.3-0.4 units (at most) can be found if ß is calculated from a broad band colour with one of the broad band filter bandpass covering the bump area.

Further analysis

•Confronting our empirical attenuation curve to models:

they must reproduce the (moderate) amplitude of bump and the (moderate)UV rise

→Either a destruction of bump carriers or dust-stars geometries to weaken the UV bump (starting with a MW-like dust) and to produce a rather gray UV attenuation curve →Models of Pierini et al (2004), Panuzzo et al. (2006), Tuffs et al (2004) seem promising.

•Exploring a larger sample of galaxies

To study the variation of the attenuation curve as a function, for example, of the amount of attenuation (predicted by the models)