Describing the optical properties of astronomical dust analogs through numerical techniques

Giuseppe Cataldo^{1,2} S. Rinehart¹ D. Benford¹ E. Dwek¹ R. Kinzer^{1,3} J. Nuth¹ E. Wollack¹

¹NASA Goddard Space Flight Center

²Universities Space Research Association

³Oak Ridge Associated Universities

From Dust to Galaxies, Paris, 06/30/2011

Introduction	Modeling	Results	Summary
0000	00	000000	000
Outline			

Introduction

- The interstellar medium in the infrared
- The quest for the optical constants

Modeling

- Previous work
- Methodology

3 Results

- Experimental data and apparatus
- Analytical outputs

④ Summary

- Conclusions
- Future perspectives

- < 토 ≻ < 토 ≻

Introduction	Modeling	Results	Summary
0000	00	000000	000
Outline			

- The interstellar medium in the infrared
- The quest for the optical constants

2 Modeling

- Previous work
- Methodology

3 Results

- Experimental data and apparatus
- Analytical outputs

🕘 Summary

- Conclusions
- Future perspectives

4 B K 4 B K

Introduction	Modeling	Results	Summary
0000	00	000000	000
Outline			

- The interstellar medium in the infrared
- The quest for the optical constants

2 Modeling

- Previous work
- Methodology

3 Results

- Experimental data and apparatus
- Analytical outputs

🕘 Summary

- Conclusions
- Future perspectives

Introduction	Modeling	Results	Summary
0000	00	000000	000
Outline			

- The interstellar medium in the infrared
- The quest for the optical constants

2 Modeling

- Previous work
- Methodology

3 Results

- Experimental data and apparatus
- Analytical outputs

🕘 Summary

- Conclusions
- Future perspectives

Introduction	Modeling	Results	Summary
●○○○	00	000000	000
The relation betwe	en dust and the inf	frared	

Figure: Formation, processing, and evolution of interstellar dust (Rinehart et al., 2008)

Interstellar dust:

- plays a role in the birth of stars
- precursor material for the formation of planets
- hides astronomical objects from our view

Infrared observations are crucial to understanding the origins of the universe.

▲圖 → ▲ 国 → ▲ 国 →

Introduction	Modeling	Results	Summary
●○○○	00	000000	000
The relation betwe	en dust and the inf	frared	

Figure: Formation, processing, and evolution of interstellar dust (Rinehart et al., 2008)

Interstellar dust:

- plays a role in the birth of stars
- precursor material for the formation of planets
- hides astronomical objects from our view

Infrared observations are crucial to understanding the origins of the universe.

• • = • • = •

Introduction	Modeling	Results	Summary
0.00			
The important	ce of studying sili	rates	

Spectral features attributed to:

- silicates
- carbonaceous grains
- PAHs

Constraints on chemical and physical structure

Their spectra need be analyzed through laboratory experiments reproducing astrophysical environments. (See Henning & Mutschke, 2010)

Introduction	Modeling	Results	Summary
0.00			
The importan	aco of studying sili.	cator	

Spectral features attributed to:

- silicates
- carbonaceous grains
- PAHs

Constraints on chemical and physical structure

Their spectra need be analyzed through laboratory experiments reproducing astrophysical environments. (See Henning & Mutschke, 2010)

Introduction	Modeling	Results	Summary
O●OO	00	000000	000
The importance of	studying silicates		

Spectral features attributed to:

- silicates
- carbonaceous grains
- PAHs

Constraints on chemical and physical structure

Their spectra need be analyzed through laboratory experiments reproducing astrophysical environments. (See Henning & Mutschke, 2010)

Figure: A) Silicates on Earth are ordered solids. B) In space their structure is chaotic. (Adapted from Rinehart et al., 2008)

Introduction	Modeling	Results	Summary
○○●○	00	000000	000
The optical	constants as primary	/ parameters	

Definition

Complex refractive index m = n + ik

- The refractive index *n* determines the velocity of constant-phase waves.
- The extinction index k determines the attenuation of the wave as it propagates through the medium.

Definition

Dielectric constant
$$\varepsilon = (n + ik)^2 = \varepsilon' + i\varepsilon''$$

Problem: the optical constants are not directly measurable.

Introduction	Modeling	Results	Summary
○○●○	00	000000	000
The optical	constants as primary	/ parameters	

Definition

Complex refractive index m = n + ik

- The refractive index *n* determines the velocity of constant-phase waves.
- The extinction index k determines the attenuation of the wave as it propagates through the medium.

Definition

Dielectric constant
$$arepsilon=(n+ik)^2=arepsilon'+iarepsilon''$$

Problem: the optical constants are not directly measurable.

Introduction	Modeling	Results	Summary
○○●○	00	000000	000
The optical	constants as primary	/ parameters	

Definition

Complex refractive index m = n + ik

- The refractive index *n* determines the velocity of constant-phase waves.
- The extinction index k determines the attenuation of the wave as it propagates through the medium.

Definition

Dielectric constant
$$arepsilon=(n+ik)^2=arepsilon'+iarepsilon''$$

Problem: the optical constants are not directly measurable.

Introduction	Modeling	Results	Summary
○○○●	00	000000	000
Objectives of the	OPASI-T program	า	

• Experimental apparatus and measurements

- Development of numerical algorithms for the computation of the optical constants as a function of wavelength and temperature
- Validation through application to laboratory data
- Analysis and interpretation of post-processed data
- Population of a library of optical properties in the far-infrared regime

ト < 臣 > < 臣 >

Introduction	Modeling	Results	Summary
○○○●	00	000000	000
Objectives of the C	PASI-T program		

- Experimental apparatus and measurements
- Development of numerical algorithms for the computation of the optical constants as a function of wavelength and temperature
- Validation through application to laboratory data
- Analysis and interpretation of post-processed data
- Population of a library of optical properties in the far-infrared regime

★ 문 → ★ 문 →

Introduction	Modeling	Results	Summary
○○○●	00	000000	000
Objectives of the C	PASI-T program		

- Experimental apparatus and measurements
- Development of numerical algorithms for the computation of the optical constants as a function of wavelength and temperature
- Validation through application to laboratory data
- Analysis and interpretation of post-processed data
- Population of a library of optical properties in the far-infrared regime

4 B K 4 B K

Introduction	Modeling	Results	Summary
○○○●	00	000000	000
Objectives of the C	PASI-T program		

- Experimental apparatus and measurements
- Development of numerical algorithms for the computation of the optical constants as a function of wavelength and temperature
- Validation through application to laboratory data
- Analysis and interpretation of post-processed data
- Population of a library of optical properties in the far-infrared regime

4 B K 4 B K

Introduction	Modeling	Results	Summary
○○○●	00	000000	000
Objectives of the C	PASI-T program		

- Experimental apparatus and measurements
- Development of numerical algorithms for the computation of the optical constants as a function of wavelength and temperature
- Validation through application to laboratory data
- Analysis and interpretation of post-processed data
- Population of a library of optical properties in the far-infrared regime

Introduction	Modeling	Results	Summary
	•0		
Uun athaaaa a	nd moth amostical.	modolo	
\square VDOLDESES >	ing mainemalical i	models	

transmission-reflection-absorption by a slab (Bohren and Huffman, 1983)

Transmission-line approximation

- One-layer slab model (Bohren and Huffman, 1983)
- Beer's law (Halpern et al., 1986)

Transition modes

• Lorentz model

Mixtures

• Maxwell-Garnett formula (Maxwell Garnett, 1904)

G. Cataldo

From Dust to Galaxies, Paris 2011

I ntroduction	Modeling	Results	Summary
0000	●○	000000	000
Hypotheses and	mathematical r	nodels	

transmission-reflection-absorption by a slab (Bohren and Huffman, 1983) Transmission-line approximation

- One-layer slab model (Bohren and Huffman, 1983)
- Beer's law (Halpern et al., 1986)

Transition modes

• Lorentz model

Mixtures

• Maxwell-Garnett formula (Maxwell Garnett, 1904)

◆母 ▶ ◆ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● ● ● ●

I ntroduction	Modeling	Results	Summary
0000	●○	000000	000
Hypotheses and	mathematical r	nodels	

transmission-reflection-absorption by a slab (Bohren and Huffman, 1983) Transmission-line approximation

- One-layer slab model (Bohren and Huffman, 1983)
- Beer's law (Halpern et al., 1986)

Transition modes

Lorentz model

Mixtures

• Maxwell-Garnett formula (Maxwell Garnett, 1904)

비로 서로에 서로에 사망

Introduction	Modeling	Results	Summary
	\odot		
Uun athacac	nd mathematical	modolo	
\square VDOLDESES >	no mainemailcai i	nodels	

transmission-reflection-absorption by a slab (Bohren and Huffman, 1983) Transmission-line approximation

- One-layer slab model (Bohren and Huffman, 1983)
- Beer's law (Halpern et al., 1986)

Transition modes

Lorentz model

Mixtures

• Maxwell-Garnett formula (Maxwell Garnett, 1904)

▲圖 → ▲ 国 → ▲ 国 →

Introduction	Modeling	Results	Summary
0000	○●		000
Constrained	minimization as n	nain working tool	

Definition (Least-Squares Nonlinear Fit)

$$\begin{split} \min_{DOFs} \chi_m^2 &= \min_{DOFs} \frac{1}{N} \sum_{j=1}^N \left[T \left(DOFs, \lambda_j \right) - T_{measured} \right]^2 \\ DOF_{min} &\leq DOF \leq DOF_{max} \\ N &= \text{ number of data points} \\ \lambda &= \text{ wavelength} \end{split}$$

Initial condition
$$\longrightarrow$$
 Fit \longrightarrow DOFs $\longrightarrow \left\{ \begin{array}{c} T, R, A \\ n, k, \varepsilon \end{array} \; \forall \lambda_j \right.$

<回> < 回> < 回> < 回>

Introduction	Modeling	Results	Summary
0000	○●		000
Constrained	minimization as n	nain working tool	

Definition (Least-Squares Nonlinear Fit)

$$\begin{split} \min_{DOFs} \chi_m^2 &= \min_{DOFs} \frac{1}{N} \sum_{j=1}^N \left[T \left(DOFs, \lambda_j \right) - T_{measured} \right]^2 \\ DOF_{min} &\leq DOF \leq DOF_{max} \\ N &= \text{ number of data points} \\ \lambda &= \text{ wavelength} \end{split}$$

Initial condition
$$\longrightarrow$$
 Fit \longrightarrow DOFs $\longrightarrow \begin{cases} T, R, A \\ n, k, \varepsilon \end{cases} \forall \lambda_j$

<回> < 注)、 < 注)、 < 注)、

Introduction	Modeling	Results	Summary
0000	00	⊙●○○○○	000

Figure: Various sample preparations are needed to cover the wide frequency range (Rinehart, Cataldo, et al., *Applied Optics*, in press).

G. Cataldo

From Dust to Galaxies, Paris 2011

Introduction	Modeling	Results	Summary
0000	00	o●oooo	000
SiO ₂ : Sample chara	acterization		

Each sample preparation has a different optical depth, which allows us to obtain transmission values in the range of 0.2-0.8 as needed to determine the optical constants to high accuracy.

Sample type	Spectral coverage [μ m]
8-mm	300 - 1000
4-mm	100 - 500
2-mm	100 - 350
Polyethylene	15 - 100
KBr	1 - 25

$$T = (1-R)^2 \exp{(-lpha h)}$$

$$R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}$$
$$k = \frac{\alpha}{2} = \frac{a}{2} \left(\frac{\omega}{2}\right)^{b-1}$$

$$\alpha = \mathbf{a} \left(\frac{\omega}{2\pi}\right)^{\mathbf{D}}$$

h =sample thickness

▶ < 토▶ < 토▶

$$T = T(n, a, b)$$

-

$$T = (1-R)^2 \exp\left(-\alpha h\right)$$

$$R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}$$
$$k = \frac{\alpha}{2\omega} = \frac{a}{2\omega} \left(\frac{\omega}{2\pi}\right)^{b-1}$$

$$\alpha = \mathbf{a} \left(\frac{\omega}{2\pi}\right)^{\mathbf{b}}$$

h =sample thickness

• • = • • = •

$$T = T(n, a, b)$$

$$T = (1-R)^2 \exp\left(-\alpha h\right)$$

$$R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}$$

$$\alpha = \mathbf{a} \left(\frac{\omega}{2\pi}\right)^{\mathbf{b}}$$

h =sample thickness

$$T = T(n, a, b)$$

◆母 ▶ ◆ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● ● ● ●

$$T = (1-R)^2 \exp\left(-\alpha h\right)$$

$$R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}$$
$$k = \frac{\alpha}{2\omega} = \frac{a}{2\omega} \left(\frac{\omega}{2\pi}\right)^{b-1}$$

$$\alpha = \mathbf{a} \left(\frac{\omega}{2\pi}\right)^{\mathbf{b}}$$

h =sample thickness

• • = • • = •

$$T = T(n, a, b)$$

$$T = (1-R)^2 \exp\left(-\alpha h\right)$$

$$R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2}$$
$$k = \frac{\alpha}{2\omega} = \frac{a}{2\omega} \left(\frac{\omega}{2\pi}\right)^{b-1}$$

$$\alpha = \mathbf{a} \left(\frac{\omega}{2\pi}\right)^{\mathbf{b}}$$

h =sample thickness

• • = • • = •

$$T=T\left(n,a,b\right)$$

Introduction	Modeling	Results	Summary
0000	00	000000	000
SiO_x : How to extra	act the optical cons	stants (mixtures)	

$$\varepsilon_{eff} = \varepsilon_{eff} (f, \varepsilon_b, \varepsilon_i)$$

Lorentz model

$$\varepsilon_{i} = (n + ik)^{2} = \varepsilon_{i,\infty} + \sum_{j=1}^{M} b_{m} \frac{\omega_{p,j}^{2}}{\omega_{0,j}^{2} - \omega^{2} - i\omega\nu_{j}} = \varepsilon_{i} (DOFs_{i}, \omega)$$

Modified Lorentz model (Sihvola, 1999)

$$\varepsilon_{eff} = \varepsilon_{eff} \left(f, \varepsilon_b, DOFs_i, \omega \right)$$

One-layer slab model (averaged)

$$T = T \left[f, arepsilon_b, (4M+1) DOFs_i, \omega
ight]$$

G. Cataldo

From Dust to Galaxies, Paris 2011

Introduction	Modeling	Results	Summary
0000	00	○○○●○○	000
SiO_x : How to	extract the optic	al constants (mixt	ures)

$$\varepsilon_{eff} = \varepsilon_{eff} \left(f, \varepsilon_b, \varepsilon_i \right) oldsymbol{O}$$

Lorentz model

$$\varepsilon_{i} = (n + ik)^{2} = \varepsilon_{i,\infty} + \sum_{j=1}^{M} b_{m} \frac{\omega_{p,j}^{2}}{\omega_{0,j}^{2} - \omega^{2} - i\omega\nu_{j}} = \varepsilon_{i} (DOFs_{i}, \omega)$$

Modified Lorentz model (Sihvola, 1999)

$$\varepsilon_{eff} = \varepsilon_{eff} \left(f, \varepsilon_b, DOFs_i, \omega \right)$$

One-layer slab model (averaged)

$$T = T \left[f, arepsilon_b, (4M+1) DOFs_i, \omega
ight]$$

G. Cataldo

From Dust to Galaxies, Paris 2011

Introduction	Modeling	Results	Summary
0000	00	000●00	000
SiO_x : How to e	extract the optica	l constants (mix	ktures)

$$\varepsilon_{eff} = \varepsilon_{eff} \left(f, \varepsilon_b, \varepsilon_i \right) oldsymbol{O}$$

Lorentz model

$$\varepsilon_{i} = (n + ik)^{2} = \varepsilon_{i,\infty} + \sum_{j=1}^{M} b_{m} \frac{\omega_{p,j}^{2}}{\omega_{0,j}^{2} - \omega^{2} - i\omega\nu_{j}} = \varepsilon_{i} (DOFs_{i}, \omega)$$

Modified Lorentz model (Sihvola, 1999)

$$\varepsilon_{eff} = \varepsilon_{eff} \left(f, \varepsilon_b, DOFs_i, \omega \right)$$

One-layer slab model (averaged)

$$T = T \left[f, arepsilon_b, (4M+1) DOFs_i, \omega
ight]$$

G. Cataldo

From Dust to Galaxies, Paris 2011

Introduction	Modeling	Results	Summary
0000	00	000●00	000
SiO_x : How to e	extract the optica	l constants (mix	ktures)

$$\varepsilon_{eff} = \varepsilon_{eff} \left(f, \varepsilon_b, \varepsilon_i \right) oldsymbol{O}$$

Lorentz model

$$\varepsilon_{i} = (n + ik)^{2} = \varepsilon_{i,\infty} + \sum_{j=1}^{M} b_{m} \frac{\omega_{p,j}^{2}}{\omega_{0,j}^{2} - \omega^{2} - i\omega\nu_{j}} = \varepsilon_{i} (DOFs_{i}, \omega)$$

Modified Lorentz model (Sihvola, 1999)

$$\varepsilon_{eff} = \varepsilon_{eff} \left(f, \varepsilon_{b}, DOFs_{i}, \omega \right)$$

One-layer slab model (averaged)

$$T = T \left[f, \varepsilon_b, (4M+1) DOFs_i, \omega
ight]$$

G. Cataldo

From Dust to Galaxies, Paris 2011

Introduction	Modeling	Results	Summary
	00	○○○●○○	000
SiO _x :	How to extract the optica	l constants (mixtui	res)

$$\varepsilon_{eff} = \varepsilon_{eff} \left(f, \varepsilon_b, \varepsilon_i \right) oldsymbol{O}$$

Lorentz model

$$\varepsilon_{i} = (n + ik)^{2} = \varepsilon_{i,\infty} + \sum_{j=1}^{M} b_{m} \frac{\omega_{p,j}^{2}}{\omega_{0,j}^{2} - \omega^{2} - i\omega\nu_{j}} = \varepsilon_{i} (DOFs_{i}, \omega)$$

Modified Lorentz model (Sihvola, 1999)

$$\varepsilon_{eff} = \varepsilon_{eff} \left(f, \varepsilon_{b}, DOFs_{i}, \omega \right)$$

One-layer slab model (averaged)

$$T = T \left[f, \varepsilon_{b}, (4M+1) DOFs_{i}, \omega
ight]$$

Introduction	Modeling	Results	Summary
		000000	

SiO_x : Fit and output parameters

		Bulk (4-mm)	Polyethylene	KBr
DOFs		3	53 (13 LOs)	153 (38 LOs)
Residual	average	0.32	0.62	0.25
ΔT [%]	maximum	2.68	3.93	1.47
χ^2_m		$2.55 \cdot 10^{-5}$	$11.12 \cdot 10^{-5}$	$1.29\cdot 10^{-5}$
σ		0.005	0.012	0.008
χ^2		109.89	239.81	146.26
χ^2_{ν}		0.93	1.15	0.25

◆□ ▶ ◆□ ▶ ◆目 ▶ ◆日 ▶ ◆□ ▶ ◆□ ▶

wavenumber [cm⁻¹]

G. Cataldo

(Adapted from Rho et al., 2008)

G. Cataldo

From Dust to Galaxies, Paris 2011

Introduction	Modeling	Results	Summary
0000	00	000000	●○○
Our sample descrip	tion		

	Advantages	Disadvantages
Bulk sample	<i>n</i> consistent with other measurements	<i>n</i> not well constrained
	a = 0.003, b = 1.552 (Agladze et al., 95;)	Need for data at longer wavelengths
	n-k independent from filling fraction $lacksquare$	<i>n — k</i> dependent on matrix
Mixture	$x \approx 1.5$	Fine-tuning
	DOFs well constrained	of starting guess
	Outputs for mix and particles 🕑	Uncertainty in measurements

● 20 日回 (日) (日) (日) (四) (□)

Introduction	Modeling	Results	Summary
0000	00	000000	⊙●0
Nevt stens			

• Measured reflectance data (TOP PRIORITY)

- Temperature dependence (Cataldo et al., in prep.)
- Development of more sophisticated models
 - Metal-enriched powders: Fe- and Mg-rich silicates (Kinzer, Cataldo, et al., in prep.)
 - Scattering
 - Multiple-layered structures
 - Unparalleled faces and roughness
- Application to new upcoming laboratory data and observations

▶ < 문 ▶ < 문 ▶</p>

Introduction	Modeling	Results	Summary
0000	00	000000	⊙●0
Next stens			

- Measured reflectance data (TOP PRIORITY)
- Temperature dependence (Cataldo et al., in prep.)
- Development of more sophisticated models
 - Metal-enriched powders: Fe- and Mg-rich silicates (Kinzer, Cataldo, et al., in prep.)
 - Scattering
 - Multiple-layered structures
 - Unparalleled faces and roughness
- Application to new upcoming laboratory data and observations

▶ < 문 ▶ < 문 ▶</p>

Introduction	Modeling	Results	Summary
0000	00	000000	⊙●⊙
Next steps			

- Measured reflectance data (TOP PRIORITY)
- Temperature dependence (Cataldo et al., in prep.)
- Development of more sophisticated models
 - Metal-enriched powders: Fe- and Mg-rich silicates (Kinzer, Cataldo, et al., in prep.)
 - Scattering
 - Multiple-layered structures
 - Unparalleled faces and roughness

• Application to new upcoming laboratory data and observations

• • E • • E •

Introduction	Modeling	Results	Summary
0000	00	000000	⊙●⊙
Next steps			

- Measured reflectance data (TOP PRIORITY)
- Temperature dependence (Cataldo et al., in prep.)
- Development of more sophisticated models
 - Metal-enriched powders: Fe- and Mg-rich silicates (Kinzer, Cataldo, et al., in prep.)
 - Scattering
 - Multiple-layered structures
 - Unparalleled faces and roughness
- Application to new upcoming laboratory data and observations

Thanks! Questions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日= のへで

The effective medium structure

G. Cataldo

From Dust to Galaxies, Paris 2011

18/20

-1

Appendix

The optical constants as a function of filling fraction

▲ Back²

G. Cataldo

From Dust to Galaxies, Paris 2011

Appendix

The optical constants for the $SiO_x - KBr$ mixture

(Rinehart, Cataldo, et al., Applied Optics, in press)

G. Cataldo

From Dust to Galaxies, Paris 2011

Appendix

The optical constants for the $SiO_x - KBr$ mixture

(Rinehart, Cataldo, et al., Applied Optics, in press)

G. Cataldo

From Dust to Galaxies, Paris 2011