Non-Standard Grain Properties Massive Dark Gas Reservoir and Extended Submillimetre Excess, Probed by Herschel in the LMC

Frédéric Galliano (AIM, CEA/Saclay)

HERITAGE: Sacha Hony, Jean-Philippe Bernard, Caroline Bot, Margaret Meixner, Suzanne Madden, Maud Galametz, Pasquale Panuzzo, Chad Engelbracht, Julia Roman-Duval, Aigen Li, Bill Reach, etc.

This study in one sentence:

Using the *Herschel* and *Spitzer* observations of the LMC, to demonstrate the various effects that one might encounter, when trying to estimate the dust mass of a galaxy.

1) Introduction & problematics

- a) Dust models
- b) The LMC

2) Methodology: dust mass estimate and SED model

- a) Degeneracy with submillimetre grain properties
- b) Rigorous error propagation
- c) Effect of spatial resolution

3) The unveiled LMC ISM properties

- a) Gas-to-dust mass ratio crisis
- b) Disentanglng dark gas and grain properties
- c) The 500 μ m excess

This study in one sentence:

Using the *Herschel* and *Spitzer* observations of the LMC, to demonstrate the various effects that one might encounter, when trying to estimate the dust mass of a galaxy.

- 1) Introduction & problematics
 - a) Dust models
 - b) The LMC

2) Methodology: dust mass estimate and SED model

- a) Degeneracy with submillimetre grain properties
- b) Rigorous error propagation
- c) Effect of spatial resolution
- 3) The unveiled LMC ISM properties
 - a) Gas-to-dust mass ratio crisis
 - b) Disentanglng dark gas and grain properties
 - c) The 500 µm excess

Dust Models in the Milky Way

Elemental Depletions dust fitting of the various Simultaneous Graph observational constraints of the diffuse Silicate in 100 Total ISM (high latitude cirrus). H⁻¹ \oplus 10 10⁶ | (Zubko, Dwek & Arendt, 2004) Si Mg Ν С 0 Fe **Infrared Emission** Interstellar Extinction Total Extinction / (total) νΙ_ν/Ν_H [10⁻²⁵erg s⁻¹sr⁻¹H⁻¹ $\left[10^{-21} \text{cm}^{2}\text{H}^{-1}\right]$ Graphite 0.1 Graphite τ_{ext}∕N_H ∣ 0.1 0.01 Silicate Silicate PAH PAH 10^{-3} 0.1 10 100 1000 Wavelength $[\mu m]$ Wavelength $[\mu m]$

The HERITAGE SD Strip

The LMC (Large Magellanic Cloud) is a nearby irregular dwarf galaxy:

✓ d ≈ 50 kpc
 ✓ Z ≈ 1/2 Z_☉
 ✓ 8° × 8°

SAGE (Spitzer program):

✓ Green: PAHs (3.6 µm)
✓ Blue: stars (4.5 µm)
✓ Red: hot dust (24 µm)

(Meixner et al., 2006)

HERITAGE (program with Herschel): 2°×8° science demonstration strip.

(Meixner, Galliano *et al.*, 2010)

This study in one sentence:

Using the *Herschel* and *Spitzer* observations of the LMC, to demonstrate the various effects that one might encounter, when trying to estimate the dust mass of a galaxy.

- 1) Introduction & problematics
 - a) Dust models
 - b) The LMC

2) Methodology: dust mass estimate and SED model

- a) Degeneracy with submillimetre grain properties
- b) Rigorous error propagation
- c) Effect of spatial resolution
- 3) The unveiled LMC ISM properties
 - a) Gas-to-dust mass ratio crisis
 - b) Disentanglng dark gas and grain properties
 - c) The 500 µm excess

1) Without SPIRE submm constraints: excess.

2) With standard dust properties: fit the excess by adding cold dust (U<1 or T_{ea}≈15 K).

3) With modified dust properties: fit the excess with intrinsic dust properties => less cold dust is needed.

Without more constraints, the two solutions are equivalent => degeneracy dust submm emissivity vs. temperature distribution.

Two Realistic Dust Compositions

To explore the effect of β : two grain compositions with realistic cross-sections, statisfying the elemental abundances:

- 1) "Standard model": Graphite, silicate & PAHs (Milky Way; β =2)
- 2) "AC model": Amorphous carbon (Zubko *et al.*, 1996), silicate & PAHs (β=1.7)

Rigorous Propagation of the Errors

Probability Distribution of the Main Parameters

Error on the dust mass:

- 1) Significant \approx 50% with a good signal-to-noise ratio.
- 2) Strongly asymetric (non-linearity of the model).

Exploring the Effects of Spatial Resolution

Russian doll modelling:

- 1) Flux conserved between the different resolutions;
- 2) Non-linearity of SED model => different masses.

Trends of Dust Mass with Spatial Resolution

- 1) Global SED: underestimate M_{dust} by ≈50%;
- 2) Stabilization around \approx 30-50 pc: resolve most of the cold regions.

This study in one sentence:

Using the *Herschel* and *Spitzer* observations of the LMC, to demonstrate the various effects that one might encounter, when trying to estimate the dust mass of a galaxy.

- 1) Introduction & problematics
 - a) Dust models
 - b) The LMC

2) Methodology: dust mass estimate and SED model

- a) Degeneracy with submillimetre grain properties
- b) Rigorous error propagation
- c) Effect of spatial resolution

3) The unveiled LMC ISM properties

- a) Gas-to-dust mass ratio crisis
- b) Disentanglng dark gas and grain properties
- c) The 500 μ m excess

The Gas-to-Dust Mass Ratio Crisis

Constraints on gas-to-dust mass ratio:

- 1) Galactic value:
 - $\overline{G_{\mathrm{dust}}^{\odot}} = \overline{158}$
- 2) Expected LMC value $(Z \approx 1/2 \times Z_{\odot})$:
 - $G_{\rm dust}^{\rm exp.} \simeq 340$
- 3) Elemental violation limit:
 - $G_{\rm dust}^{\rm lim.} \simeq 120$

Assuming that the gas mass is correct, the AC model is consistent, but the standard model violates the elemental abundances.

Or the gas mass can be wrong => look at spatial variations.

Disentangling the Different Processes

Variation of G_{dust} with mass averaged starlight intensity (<U>):

- 1) High <U>: model bias, possible dust destruction;
- 2) Intermediate <U>: diffuse ISM, reference gas-to-dust mass ratio;
- 3) Low <U>: enhanced dust condensations, contribution of dark gas.

(Galliano et al., 2011)

Origin of the Submillimetre Excess

Submm excess properties (≈15% on average):

- a) Anticorrelated with the dust column density;
- b) Very cold dust unlikely: no excess in dense regions & not enough shielding;
- c) No significant bias of the general dust mass estimate.

This study in one sentence:

Using the *Herschel* and *Spitzer* observations of the LMC, to demonstrate the various effects that one might encounter, when trying to estimate the dust mass of a galaxy.

- 1) Introduction & problematics
 - a) Dust models
 - b) The LMC

2) Methodology: dust mass estimate and SED model

- a) Degeneracy with submillimetre grain properties
- b) Rigorous error propagation
- c) Effect of spatial resolution
- 3) The unveiled LMC ISM properties
 - a) Gas-to-dust mass ratio crisis
 - b) Disentanglng dark gas and grain properties
 - c) The 500 µm excess

Summary & Conclusion

1) Methodology: modelling of the IR/submm emission of a strip through the LMC:

- a) Rigorous propagation of the error;
- b) Dust mass can be underestimated by ≈50%, without sufficient spatial resolution;
- c) Degeneracy between the intrinsic grain properties (β_{submm}) and their temperature distribution.

2) ISM properties of the LMC:

- a) With standard grain properties (β =2), M_{gas}/M_{dust} violates the elemental abundances;
- b) Spatially, the small M_{gas}/M_{dust} regions are associated to denser regions.
- c) Looking at the physical conditions (<U>), identification of:
 - $\checkmark\,$ Diffuse ISM with no dark gas;
 - $\checkmark\,$ Denser regions with dark gas and excess condensation.
- d) Standard grain properties (β =2) are unphysical, we propose an alternative consistent model (β =1.7), which is realistic but not unique.
- e) 500 μm excess associated to diffuse ISM, and not affecting our conclusions.

3) Consequences and extrapolation of this study:

The dust mass depends strongly on the assumed grain properties which appear to vary with metallicity;