Abstract
Multi-wavelength study of extended astronomical objects requires combining images from instruments with differing point spread functions (PSFs).
We constructed convolution kernels that allow one to generate (multi-wavelength) images with a common PSF, thus preserving the colors of the astronomical sources. We generate convolution kernels for the cameras of the Spitzer Space Telescope, Herschel Space Observatory, Galaxy Evolution Explorer (GALEX), Wide-field Infrared Survey Explorer (WISE), ground-based optical telescopes (Moffat functions and sum of Gaussians), and Gaussian PSFs. These kernels allow the study of the Spectral Energy Distribution (SED) of extended objects, preserving the characteristic SED in each pixel.
The convolution kernels and the IDL packages used to construct and use them are made publicly available.

Convolution Kernels

Given two cameras A and B, with (different) PSFs Ψ_{A} and Ψ_{B}, the images obtained of an astronomical object will, even if the spectral response of the cameras were identical, be different. A convolution kernel is a tool that transforms the image observed by one camera into an image corresponding to the PSF of another camera. The convolution kernel $K_{A \Rightarrow B}$ from camera A to camera B should satisfy:
$I_{B}(x, y)=\iint I_{A}\left(x^{\prime}, y^{\prime}\right) K_{A \Rightarrow B}\left(x-x^{\prime}, y-y^{\prime}\right) d x^{\prime} d y$ where I_{A} and I_{B} are the observed images by the cameras A and B respectively. We can easily invert this equation in Fourier space:

$$
K_{A \Rightarrow B}=F T^{-1}\left(F T\left(\Psi_{B}\right) \times \frac{1}{F T\left(\Psi_{A}\right)}\right)
$$

where $F T$ and $F T^{-1}$ stand for the Fourier transform and its inverse transformation respectively Several Filters are applied (see [1]).

Kernel Performance

We generated the kernels $K_{A \Rightarrow B}$ for all appropriate combinations (A, B). We compute Ψ_{A} * $K_{A \Rightarrow B}$, and compare it with Ψ_{B}
One measure of kernel performance is its accuracy in redistribution of PSF power. We define:

$$
D=\iint\left|\Psi_{B}-K_{A \Rightarrow B} \star \Psi_{A}\right| d x d y
$$

A second quantitative measure of kernel performance is obtained by studying its negative values. We define:

$$
W_{ \pm}=\frac{1}{2} \iint\left(\left|K_{A \Rightarrow B}\right| \pm K_{A \Rightarrow B}\right) d x d y
$$

On [1] we studied the performance of all the kernels generated. For example:

Ground-based optical and radio telescopes

- Gaussians: $\Psi(\theta)=\frac{1}{2 \pi \sigma^{2}} \exp \left(\frac{-\theta^{2}}{2 \sigma^{2}}\right)$, with $5^{\prime \prime}<$ FWHM $<60^{\prime \prime}$
- Optical:

$$
\Psi(\theta)=0.9 \frac{1}{2 \pi \sigma^{2}} \exp \left(\frac{-\theta^{2}}{2 \sigma^{2}}\right)+0.1 \frac{1}{2 \pi(2 \sigma)^{2}} \exp \left(\frac{-\theta^{2}}{2(2 \sigma)^{2}}\right)
$$ with $\mathrm{FWHM}=0.5,1.0,1.5,2.0,2.5^{\prime \prime}$

- Optical:

PSFs are of the form: $\Psi(r)=0.8 \times M_{7}(\theta)+0.2 \times M_{2}(\theta)$, with $\mathrm{FWHM}=2 \theta_{0}=0.5,1.0,1.5,2.0,2.5^{\prime \prime}$

Example: $K_{\text {MIPS } 24 \Rightarrow \text { SPIRE250 }}$

References

1] Aniano, G., Draine, B., Gordon, K., Sandstrom, K., PASP, submitted, (see Tuesday’s astro-ph: arXiv:1106.5065

Example: NGC1097

Herschel and Spitzer images convolved to SPIRE $250 \mu \mathrm{mPSF}$:

Fig. 9.- Spitzer and Herschel images of NGC1097 convolved to a SPIRE $250 \mu \mathrm{~m}$ PSF. The the same dynamic range (10.49) for all images.
SPIRE $250 \mu \mathrm{~m}$ convolved:

Fig. 10- SPIRE 250μ mimage of NGC1097. Top row left: original SPIRE image; center:
 PSFs: left (aggressive) $\mathrm{FWHM}=19^{\prime \prime}\left(W_{-}=1.05\right)$) center (moderate $\mathrm{FWHM}=21^{\prime \prime}\left(W_{-}=\right.$
$0.44)$: right (very safe) $\mathrm{FWHM}=22^{\prime \prime}(W=0.30)$. All the images have the same color bar

Optimal Gaussian PSFs

For each instrumental PSF we found a set of op timal Gaussian PSF.
The first FWHM is obtained by requiring that $W_{-} \sim 0.3$, giving a conservative (very safe) kernel that does not seek to move too much energy from the wings into the main Gaussian core, at the cost of having a larger FWHM (i.e., lower resolution).
The second FWHM has $W_{-} \sim 0.5$, and we con sider it to be a good (moderate) Gaussian FWHM to use.
The third FWHM has $W_{-} \sim 1.0$

Camera	Actual FWHM (")	Aggressive Gaussian with $W_{-} \approx 1.0$		Moderate Gaussian with $W_{-} \approx 0.5$		Very safe Gaussian with $W_{-} \approx 0.3$	
		FWHM (")	W-	FWHM (${ }^{\prime \prime}$)	W-	FWHM (${ }^{\prime \prime}$)	W_{-}
MIPS 24 $\mu \mathrm{m}$	6.5	8.0	1.00	11.0	0.49	13.0	0.30
MIPS $70 \mu \mathrm{~m}$	18.7	22.0	1.01	30.0	0.51	37.0	0.30
MIPS 160 $\mu \mathrm{m}$	38.8	46.0	1.01	64.0	0.50	76.0	0.30
PACS 70 mm	5.8	6.5	0.84	8.0	0.48	10.5	0.31
PACS 100 $\mu \mathrm{m}$	7.1	7.5	1.10	9.0	0.52	12.5	0.31
PACS 160 $\mu \mathrm{m}$	11.2	12.0	1.05	14	0.50	18.0	0.33
SPIRE 250 $\mu \mathrm{m}$	18.2	19.0	1.05	21.0	0.44	22.0	0.30
SPIRE $350 \mu \mathrm{~m}$	25.0	26.0	0.98	28.0	0.50	30.0	0.27
SPIRE $500 \mu \mathrm{~m}$	36.4	38.0	0.96	41.0	0.48	43.0	0.30

