Resolved optical-IR SEDs of Galaxies: Universal relations and their break-down on local scales

SZ \& Groves, arXiv:1106.2165, MNRAS in press

Stefano Zibetti

Dark Cosmology Centre
Niels Bohr Institute - University of Copenhagen
In collaboration with Brent Groves (MPIA)
30.6.2011 - From dust to Galaxies - IAP

Galaxy SEDs: the link between stars and dust

Galaxy SEDs: the link between stars and dust

"Obvious" global optical-(mid)IR correlations

- Global correlations between optical-optical, optical-IR and IR-IR colors are now well established

Optical colors, correlated \rightarrow shape of stellar cont., sensitive to age (plus Z and dust)

- MIR vs opt/NIR colors \leftrightarrow dust vs stellar emission
- High sSFR \Rightarrow blue optical colors due to young stars, abundant UV radiation absorbed and reemitted produces enhanced IR
- Low sSFR \Rightarrow red optical colors, less IR

Galaxies are more than a "point"

- Strong SED variations within galaxies: different physical conditions, stellar populations, SF, dust
- Color correlations hold on "local" scales?
- Physical mechanisms affecting optical and IR are concurrent and contrary: dust emission is powered by UV-blue luminous stars, which in turn are reddened by the dust!
- once stars and dust clumps are resolved (tens of pc) relations must break down
- What about scales of approx. 0.1 to 1 kpc?
- Will this teach us anything about how homogeneous are galaxies and "mixing" timescales?

Setting up the experiment...

- 7 galaxies covering the full range of morphologies, $D<20$ Mpc, observed in
- optical (ugriz SDSS)
- H-band (1.65 um, CAHA/GOLDMine, UKIDSS)
- 3.6-4.5-5.7-8 $\mu \mathrm{m}$ (Spitzer-IRAC, in SINGS)
- Ha (SINGS ancillary)
- Bands matched in resolution, approx. 200 pc, and
- enhanced S/N (adaptsmooth-ed, SZ09)

The sample in full color

Table 2. Physical properties of the sample galaxies.

Denomination (1)	Morph. type	Inclination degrees (3)	$\begin{array}{r} M^{*} \\ \log M_{\odot} \\ (4) \end{array}$	$\begin{array}{r} \mathrm{SFR} \\ \log \mathrm{M}_{\odot} \mathrm{yr}^{-1} \end{array}$ (5)	$\begin{array}{r} \mathrm{sSFR} \\ \log \mathrm{yr}^{-1} \end{array}$ (6)	$\begin{array}{r} \mathrm{Z}(\text { gas }) \\ 12+\log (\mathrm{O} / \mathrm{H}) \end{array}$	Nuclear classification
NGC 3521	$\mathrm{SAB}(\mathrm{rs}) \mathrm{bc}$	64	10.52	0.33	-10.19	9.01	LINER
NGC 4254	SA(s)c	30	9.71	0.82	-8.89	9.17	LINER
NGC 4321	SAB(s)bc	32	10.46	0.55	-9.91	9.11	LINER
NGC 4450	SA(s)ab	43	10.80	0.03	-10.77	9.13	LINER
NGC 4536	SAB(rs)bc	67	9.59	0.49	-9.10	9.00	None ${ }^{a}$
NGC 4552	E0-1	. .	10.97			9.12	LINER
NGC 4579	SAB(rs)b	38	10.06	-0.06	-10.12	9.22	LINER

SZ, Charlot \& Rix (2009, MNRAS)

H band-normalized SEDs

- Normalize SEDs to H-band

- describe SED shape independent of brightness
- H-band (1.65 $\mu \mathrm{m})$ is a convenient boundary between stellar-light and dust-emission dominated wavelengths
- Mostly sensitive to stellar mass, minimum contamination by dust either in emission or absorption
- Definition of "color":
- color $[X]=\log \nu f_{v}(X)-\log \nu f_{v}(H)$

Recovery of known global correlations

Break down of opt-IR correlations on scales of $\approx 0.2 \mathrm{kpc}$

Break down of opt-IR correlations on scales of $\approx 0.2 \mathrm{kpc}$

- On local (~0.2 kpc) scales:
- optical and IR largely independent
- optical-optical and IR-IR well correlated
- On local (~0.2 kpc) scales:
- optical and IR largely independent - optical-optical and IR-IR well correlated
- Are local SEDs a 2-parameter family?

Principal component analysis (PCA)

$$
\begin{gathered}
\mathrm{SED}_{i}=\left\{\log \nu_{X} f_{\nu_{X}, i}-\log \nu_{H} f_{\nu_{H}, i}\right\}_{X=u, g, r, i, z, 3.6,4.5,5.7,8 \mu \mathrm{~m}} \\
\mathrm{SED}_{i}=\mathrm{SED}_{\text {mean }}+\sum_{j=1,9} a_{i, j} \mathrm{PC} j
\end{gathered}
$$

- $P C_{j}$ are uncorrelated and
- ordered such that the first PCs retain most of the variation
- $S E D_{i}$ vectors well represented by the linear combination of the first few PCs

$\stackrel{\rightharpoonup}{2}$
$\stackrel{\sim}{2}$

- PC1 is driven variations in IR (i.e. PAHs and hot dust): ~sSFR
- timescale $\sim 10^{7} y r$
- PC2 dominates variations in optical, driven by stellar age, dust absorption [and Z] (anticorrelation with stellar mass density)
- timescale $\sim 10^{8-9} y r$
- PC1 is driven variations in IR (i.e. PAHs and hot dust): ~sSFR - timescale $\sim 10^{7} y r$
- PC2 dominates variations in optical, driven by stellar age, dust absorption [and Z] (anticorrelation with stellar mass density)
- timescale $\sim 10^{8-9} y r$

Stacked local MIR color-color plots

Stacked local MIR color-color plots

Universal IR scaling relations

$[8 \mu \mathrm{~m}]-[\mathrm{H}]$

$[8 \mu \mathrm{~m}]-[\mathrm{H}]$

Table 2. Polynomial fit coefficients to the IR colour-colour relations presented in Fig. 8. The y color named in column 1 can be obtained from $[8 \mu \mathrm{~m}]-[H]=x$ as $y=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}$

Colour (1)	c_{0}	c_{1}	c_{2}	c_{3}	c_{4}
$[3.6 \mu \mathrm{~m}]-[8 \mu \mathrm{~m}]$	-0.564	-0.639	0.420	0.291	0.079
$[4.5 \mu \mathrm{~m}]-[8 \mu \mathrm{~m}]$	-0.840	-0.572	0.471	0.321	0.091
$[5.7 \mu \mathrm{~m}]-[8 \mu \mathrm{~m}]$	-0.312	-0.114	0.201	0.092	0.060

Universal IR scaling relations

$[8 \mu \mathrm{~m}]-[\mathrm{H}]$

[$8 \mu \mathrm{~m}]-[\mathrm{H}]$

High predictive power of $8 \mu \mathrm{~m} / \mathrm{H}$

ratio

Table 2. Polynomial fit coefficients to the IR colour-colour relations presented in Fig. 8. The y color named in column 1 can be obtained from $[8 \mu \mathrm{~m}]-[H]=x$ as $y=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}$

Colour (1)	c_{0}	c_{1}	c_{2}	c_{3}	c_{4}
$[3.6 \mu \mathrm{~m}]-[8 \mu \mathrm{~m}]$	-0.564	-0.639	0.420	0.291	0.079
$[4.5 \mu \mathrm{~m}]-[8 \mu \mathrm{~m}]$	-0.840	-0.572	0.471	0.321	0.091
$[5.7 \mu \mathrm{~m}]-[8 \mu \mathrm{~m}]$	-0.312	-0.114	0.201	0.092	0.060

- Very tight universal correlations between (M)IR colors
- reconcile with PAH variations?
- Knowledge of brightness at $1.65 \mu m$ (purely stellar) and 8um (max dust+stars) allows to derive intermediate wavelengths with few \% accuracy
- Provide purely stellar emission ratios by asymptotic extrapolation

Table 3. Pure stellar emission flux ratios derived from IR colour-colour relations presented in Fig. 8. A comparison to the predictions from stellar population synthesis models is given in the three bottom rows (see text for details).

Slope from relation (1)	$[3.6]-[H]$ (2)	$[4.5]-[H]$ (3)	$[5.7]-[H]$ (4)	$\begin{gathered} {[8]-[H]} \\ (5) \end{gathered}$	$[4.5]-[3.6]$ (6)	$[5.7]-[3.6]$ (7)	$\begin{gathered} {[8]-[3.6]} \\ (8) \end{gathered}$
$[3.6 \mu \mathrm{~m}]-[8 \mu \mathrm{~m}]$	-0.742	-1.044	-1.194	-1.491	-0.301	-0.453	-0.749
$[4.5 \mu \mathrm{~m}]-[8 \mu \mathrm{~m}]$	-0.740	-1.046	-1.178	-1.384	-0.306	-0.437	-0.644
$[5.7 \mu \mathrm{~m}]-[8 \mu \mathrm{~m}]$	-0.741	-1.038	-1.199	-1.572	-0.297	-0.458	-0.832
mean	-0.741 ± 0.001	-1.043 ± 0.003	-1.190 ± 0.009	-1.482 ± 0.077	-0.301 ± 0.004	-0.449 ± 0.009	-0.742 ± 0.077
Helou et al. (2004)					-0.225	-0.399	-0.635
CB07 ($>2 \mathrm{Fyy}$)	-0.745	-1.047	-1.321	-1.687	-0.302	-0.576	-0.942
$\operatorname{CB07}(\approx 1 \mathrm{Gyr})$	-0.644	-0.893	-1.158	-1.514	-0.249	-0.514	-0.870

Conclusions

- Optical-IR relations contain informations on physics of galaxy evolution, in particular how SF, heating of dust, aging of stellar populations relate to each other
- Global relations break down on small (few 100 pc) scales, probably because locally the evolution of the distinct physical parameters (having different time scales) which govern the emission in the optical and IR regimes is not as smooth as it is globally
- MIR relations are almost universal even for local scales: but why?

