Resolved optical-IR SEDs of Galaxies: Universal relations and their break-down on local scales

SZ & Groves, arXiv:1106.2165, MNRAS in press

Stefano Zibetti

Dark Cosmology Centre

Niels Bohr Institute - University of Copenhagen

In collaboration with Brent Groves (MPIA)

30.6.2011 - From dust to Galaxies - IAP

Galaxy SEDs: the link between stars and dust

DaCunha+08

Galaxy SEDs: the link between stars and dust

DaCunha+08

"Obvious" *global* optical-(mid)IR correlations

• **Global** correlations between optical-optical, optical-IR and IR-IR colors are now well established

Optical colors, correlated \rightarrow shape of stellar cont., sensitive to age (plus Z and dust)

- MIR vs opt/NIR
 colors ↔ dust vs
 stellar emission
- o High sSFR ⇒ blue optical colors due to young stars, abundant UV radiation absorbed and reemitted produces enhanced IR
- Low sSFR ⇒ red
 optical colors, less IR

Galaxies are more than a "point"

- Strong SED variations within galaxies: different physical conditions, stellar populations, SF, dust
- Color correlations hold on "local" scales?
 - Physical mechanisms affecting optical and IR are concurrent and contrary: dust emission is powered by UV-blue luminous stars, which in turn are reddened by the dust!
 - once stars and dust clumps are resolved (tens of pc) relations must break down
 - What about scales of approx. 0.1 to 1 kpc?
 - Will this teach us anything about how homogeneous are galaxies and "mixing" timescales?

Setting up the experiment...

- 7 galaxies covering the full range of morphologies, D<20 Mpc, observed in
 - optical (ugriz SDSS)
 - H-band (1.65µm, CAHA/GOLDMine, UKIDSS)
 - 3.6-4.5-5.7-8µm (Spitzer-IRAC, in SINGS)
 - *H*α (SINGS ancillary)
- Bands matched in resolution, approx. 200 pc, and
 enhanced S/N (adaptsmooth-ed, SZ09)

The sample in full color

The state of the second of the

NGC4452 - E

-5 0 kpc

5

kpc

Denomination (1)	Morph. type (2)	Inclination degrees (3)	$\begin{array}{c} M^*\\ \log\mathrm{M}_\odot\\ (4)\end{array}$	$\begin{array}{c} \text{SFR} \\ \log \mathrm{M}_{\odot} \mathrm{yr}^{-1} \\ (5) \end{array}$	sSFR log yr ⁻¹ (6)	Z(gas) 12 + log (O/H) (7)	Nuclear classification (8)
	. ,				()		
NGC 3521	SAB(rs)bc	64	10.52	0.33	-10.19	9.01	LINER
NGC 4254	SA(s)c	30	9.71	0.82	-8.89	9.17	LINER
NGC 4321	SAB(s)bc	32	10.46	0.55	-9.91	9.11	LINER
NGC 4450	SA(s)ab	43	10.80	0.03	-10.77	9.13	LINER
NGC 4536	SAB(rs)bc	67	9.59	0.49	-9.10	9.00	$None^a$
NGC 4552	E0-1		10.97	17.2 St. 4.5	ALC: TO	9.12	LINER
NGC 4579	SAB(rs)b	38	10.06	-0.06	-10.12	9.22	LINER

kpc

kpc

kpc

NGC4321 - SABbc

kpc

SZ, Charlot & Rix (2009, MNRAS)

NGC 4254

NGC 4450

H band-normalized SEDs

- Normalize SEDs to H-band
 - describe SED shape independent of brightness
 - *H-band (1.65µm) is a convenient boundary between stellar-light and dust-emission dominated wavelengths*
 - Mostly sensitive to stellar mass, minimum contamination by dust either in emission or absorption
- Definition of "color":

• color $[X] = Log \nu f_{\nu}(X) - Log \nu f_{\nu}(H)$

Recovery of known global correlations

Break down of opt-IR correlations on scales of ≈ 0.2 kpc

Break down of opt-IR correlations on scales of ≈ 0.2 kpc

Stacked local color-color plots 0.04

0.3

0.0

-0.3

-0.6

+0.94

ົອຍ

NGC 4254 - SAc NGC 3521 - SABbc** NGC 4552 - E 0.06

On local (~0.2 kpc) scales:
 optical and IR largely independent
 optical-optical and IR-IR well
 correlated

On local (~0.2 kpc) scales:

 optical and IR largely independent
 optical-optical and IR-IR well
 correlated

 Are local SEDs a 2-parameter family?

Principal component analysis (PCA)

 $\operatorname{SED}_{i} = \{ \log \nu_{X} f_{\nu_{X},i} - \log \nu_{H} f_{\nu_{H},i} \}_{X=u,g,r,i,z,3.6,4.5,5.7,8\mu \mathrm{m}}$

 $SED_i = SED_{mean} + \sum_{j=1,9} a_{i,j} PCj$

- PC_j are uncorrelated and
- ordered such that the first PCs retain most of the variation
- SED_i vectors well represented by the linear combination of the first few PCs

NGC 4254

1254 NGC

254 SN

 λ/μ m

NGC 4450

NGC 4450

25

S

PC1 is driven variations in IR
 (i.e. PAHs and hot dust): ~ sSFR

• timescale ~10⁷yr

 PC2 dominates variations in optical, driven by stellar age, dust absorption [and Z] (anticorrelation with stellar mass density)

• timescale ~10⁸⁻⁹yr

PC1 is driven variations in IR
 (i.e. PAHs and hot dust): ~ sSFR

• timescale ~10⁷yr

 PC2 dominates variations in optical, driven by stellar age, dust absorption [and Z] (anticorrelation with stellar mass density)

• timescale ~10⁸⁻⁹yr

 Picturing a galaxy with different "exposure times" while it evolves: origin of the small scale break-down

 Global correlations result from smooth global SFH

Stacked local MIR color-color plots

Stacked local MIR color-color plots

Already at 3.6µm dust contamination is significant (see also Mentuch, Abraham & SZ '10) important implications for stellar mass maps (see also SZ, Charlot & Rix '09)

Universal IR scaling relations

Table 2. Polynomial fit coefficients to the IR colour-colour relations presented in Fig. 8. The y color named in column 1 can be obtained from $[8\mu m] - [H] = x$ as $y = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + c_4 x^4$

0.5

$ \begin{bmatrix} 3.6\mu m \end{bmatrix} - \begin{bmatrix} 8\mu m \end{bmatrix} & -0.564 & -0.639 & 0.420 & 0.291 & 0.079 \\ \begin{bmatrix} 4.5\mu m \end{bmatrix} - \begin{bmatrix} 8\mu m \end{bmatrix} & -0.840 & -0.572 & 0.471 & 0.321 & 0.091 \\ \begin{bmatrix} 5.7\mu m \end{bmatrix} - \begin{bmatrix} 8\mu m \end{bmatrix} & -0.312 & -0.114 & 0.201 & 0.092 & 0.060 \\ \end{bmatrix} $	Colour (1)	$\begin{array}{c} c_0 \\ (2) \end{array}$	$\begin{array}{c} c_1 \\ (3) \end{array}$	$\begin{array}{c} c_2\\ (4) \end{array}$	$\begin{array}{c} c_3 \\ (5) \end{array}$	$\begin{array}{c} c_4 \\ (6) \end{array}$
	$[3.6\mu m] - [8\mu m] [4.5\mu m] - [8\mu m] [5.7\mu m] - [8\mu m]$	-0.564 -0.840 -0.312	-0.639 -0.572 -0.114	$\begin{array}{c} 0.420 \\ 0.471 \\ 0.201 \end{array}$	0.291 0.321 0.092	$\begin{array}{c} 0.079 \\ 0.091 \\ 0.060 \end{array}$

Universal IR scaling relations

0.70

-0.8

. 1 arcmin

Very tight universal correlations between (M)IR colors

• reconcile with PAH variations?

- Knowledge of brightness at 1.65µm (purely stellar) and 8µm (max dust+stars) allows to derive intermediate wavelengths with few % accuracy
 Provide purely stellar emission ratios by asymptotic
- extrapolation

Table 3. Pure stellar emission flux ratios derived from IR colour-colour relations presented in Fig. 8. A comparison to the predictions from stellar population synthesis models is given in the three bottom rows (see text for details).

Slope from relation (1)	[3.6] - [H] (2)	[4.5] - [H] (3)	[5.7] - [H] (4)	[8] - [H] (5)	[4.5] - [3.6] (6)	[5.7] - [3.6] (7)	[8] - [3.6] (8)
$egin{aligned} [3.6 \mu \mathrm{m}] &- [8 \mu \mathrm{m}] \ [4.5 \mu \mathrm{m}] &- [8 \mu \mathrm{m}] \ [5.7 \mu \mathrm{m}] &- [8 \mu \mathrm{m}] \end{aligned}$	$-0.742 \\ -0.740 \\ -0.741$	-1.044 -1.046 -1.038	-1.194 -1.178 -1.199	-1.491 -1.384 -1.572	-0.301 -0.306 -0.297	-0.453 -0.437 -0.458	-0.749 -0.644 -0.832
mean	-0.741 ± 0.001	-1.043 ± 0.003	-1.190 ± 0.009	-1.482 ± 0.077	-0.301 ± 0.004	-0.449 ± 0.009	-0.742 ± 0.077
Helou et al. (2004) CB07 (> 2Gyr) CB07 (\approx 1Gyr)	 -0.745 -0.644	 -1.047 -0.893	 -1.321 -1.158	 -1.687 -1.514	-0.225 -0.302 -0.249	$-0.399 \\ -0.576 \\ -0.514$	$-0.635 \\ -0.942 \\ -0.870$

"Annoying" geometrical effects: inclined disks

 4.5μ m observed

-0.6

-0.8

synthetic

Conclusions

see SZ & Groves, arXiv:1106.2165, MNRAS in press

- Optical-IR relations contain informations on physics of galaxy evolution, in particular how SF, heating of dust, aging of stellar populations relate to each other
- Global relations break down on small (few 100 pc) scales, probably because locally the evolution of the distinct physical parameters (having different time scales) which govern the emission in the optical and IR regimes is not as smooth as it is globally
- MIR relations are almost universal even for local scales: but why?