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Fig. la. Diagram of gravitational instability in the ‘big-bang” model. The region of instability is

located to the right of the line M (¢); the region of stability to the left. The two additional lines of

the graph demonstrate the temporal evolution of density perturbations of matter: growth until the

moment when the considered mass is smaller than the Jeans mass and oscillations thereafter. It is

apparent that at the moment of recombination perturbations corresponding to different masses
correspond to different phases.
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o o Horizon: region of causal contact.
cenarios
String Gas o Hubble radius: /y(t) = H~'(t) inverse expansion rate.
Cosmology -
< Brane @ Hubble radius: local concept, relevant for dynamics of
sounee cosmological fluctuations.
Inflation? . .
ol o In Standard Big Bang Cosmology: Hubble radius =
onclusions .
horizon.

o In any theory which can provide a mechanism for the
origin of structure: Hubble radius # horizon.
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Cosmology the Hubble radius at early times in order for a causal

S e generation mechanism of fluctuations to be possible.

Inflation? o Squeezing of fluctuations on super-Hubble scales in

Conclusions order to obtain the acoustic oscillations in the CMB

angular power spectrum.

@ Mechanism for producing a scale-invariant spectrum of
curvature fluctuations on super-Hubble scales.
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If EOS of matter is time independent, then z « a and
Uoxv.

9 Inthiscase r ~ 1.
o During a phase transition EoS changes and u evolves

differently than v (z evolves differently than a).

@ — Suppression of r.
o Example 1: Inflationary slow roll suppression (equiv.:

change in EoS during reheating).

Example 2: nonsingular bounce phase in a bouncing
cosmology.
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Ferturbatons o To produce a scale-invariant spectrum a mechanism to
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e wavelength modes is needed.
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Conclusions universe.

,1 h 2

Vk(n) ~n~" where a(n) ~n

o Hubble radius crossing condition:

ka(nu(k)) = tnu(k)) — nr(k) ~ Kk

29/77



Alternatives @ Thus the power spectrum becomes

R. Branden-
berger

_ Vk(n) |2
Introduction PC(k,T]) ~ kSZ(’I]) 2|Vk(77H(k))|2(—)
Perturbations k Vk (nH(k))
Scenarios ~ k3k—1 (77H( )))22(77)_2 o EEE
String Gas Ui
Cosmolog
S : o Thus, a scale-invariant spectrum of curvature

Bounce fluctuations results.

Inflation?

Conclusions

30/77



Alternatives
R. Branden-
berger
Introduction
Perturbations
Scenarios

String Gas
Cosmology

S-Brane
Bounce

Inflation?

Conclusions

o Thus the power spectrum becomes

Pek,n) ~ k32(77)_2|vk(77H(k))|2(%)2

k3k—1 (anlk)) )22(77)—2

o Thus, a scale-invariant spectrum of curvature
fluctuations results.

o The fluctuations can be followed through the bouncing
phase, modeled as a(n) = 1 + cn?.

o Use Hwang-Vishniac (Deruelle-Mukhanov) matching
conditions at the two surfaces (between contracting
matter and bounce phase, and between bounce phase
and expanding matter phase) to complete the evolution
of .

~ const
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Introduction o Warm Inflation: almost exponential expansion, thermal,
Perturbations adiabatic [Berera and Fang, 1995]
SIS o Matter Bounce: matter-dominated contraction, vacuum,
Commatoey adiabatic [Wands, 1999, Finelli and RB, 2002].
S Brano o New Ekpyrotic: slow contraction, vacuum, entropy
o [Khoury et al., 2007]
Conclusions o Pre-Big-Bang: dilaton gravity contraction, vacuum,

entropy [Gasperini and Veneziano, 1992]

o String Gas Cosmology: emergent, string thermal,
adiabatic [RB and C. Vafa, 1989; Nayeri et al, 2006].

@ Conformal Universe: emergent, vacuum, “adiabatic”
[Rubakov, 2009; Hinterbichler and Khoury, 2011].
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Introduction

Perturbations

Scenarios

o All of these scenarios produce a scale-invariant
Costmology spectrum of cosmological perturbations.

o e o What observations allow us to distinguish between

Bounce

Inflation? them'?

Conclusions

37/77



Observational Diagnostics

Alternatives

R. Branden-
berger

o Matter bounce: bispectrum with f,; ~ 1 and a distinctive
Introduction Shape

Perturb'aUOl“IS Q Matter bounce graV|tat|0na| wave SpeCtrum Wlth a
Scenarios large amplitude.

String Gas

Cosmology o Matter bounce: negative running of the power
g(ﬁrﬁgee spectl’um.

Inflation?

Conclusions
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Introduction Shape

e o Matter bounce: gravitational wave spectrum with a
Scenarios |arge amplitUde-

String Gas . R

Cosmology o Matter bounce: negative running of the power

o e spectrum.

Inflation? o String gas cosmology: gravitational wave spectrum with
Conclusions a blue t||t

o New Ekpyrotic scenario, Pre-Big-Bang, conformal
Universe: gravitational wave spectrum with a very small
amplitude.
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Observational Challenges for Inflationary
Cosmology

Alternatives

R. Branden-
berger

Introduction

Perturbations

Scenarios o Amplitude and shape of the bispectrum.
String Gas

Cosmology o Amplitude and tilt of the spectrum of gravitational
S-Brane waves.

Bounce
— @ Running of the spectrum of cosmological perturbations.

Conclusions
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@ Example of the Emergent Scenario: String Gas
Cosmology
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Principles

Alternatives

R géfggfn- Idea: make use of the new symmetries and new degrees of
freedom which string theory provides to construct a new

inireduction theory of the very early universe.

Bl Assumption: Matter is a gas of fundamental strings

z?e”a'gs Assumption: Space is compact, e.g. a torus.

trin. as .

Colsrgology Key pOlntS:

S-Brane

Bounce o New degrees of freedom: string oscillatory modes

o o Leads to a maximal temperature for a gas of strings,
the Hagedorn temperature

@ New degrees of freedom: string winding modes

o Leads to a new symmetry: physics at large R is
equivalent to physics at small R

Conclusions
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T-Duality

Alternatives

R. Branden-
berger

Introduction T-Dua“ty

Ferlurbatons @ Momentum modes: E, = n/R

e Winding modes: E;;, = mR

Duality: R —1/R (n,m) — (m, n)

Mass spectrum of string states unchanged
Symmetry of vertex operators

Symmetry at non-perturbative level — existence of
D-branes

String Gas
Cosmology

S-Brane
Bounce

Inflation?

Conclusions

© 0 0 0 o
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Perturbations
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String Gas
Cosmology

Adiabatic Considerations

T-dual Phase

Temperature-size relation in string gas cosmology

T

~

Iy
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Introduction

String Gas
Cosmology

Inflation?

Conclusions

Structure formation in string gas cosmology

N.B. Perturbations originate as thermal string gas
fluctuations.



Method

Alternatives

R. Branden-
berger

Introduction

FERRETRIE o Calculate matter correlation functions in the Hagedorn

e phase (neglecting the metric fluctuations)

S’J;”,ﬁo?ofy o For fixed k, convert the matter fluctuations to metric
oo fluctuations at Hubble radius crossing t = tj(k)
Inflation? o Evolve the metric fluctuations for t > t;(k) using the
Conclusions usual theory of cosmological perturbations
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Extracting the Metric Fluctuations

Alternatives

R. Branden-
berger

Ansatz for the metric including cosmological perturbations
Introduction and gravitational waves:

Perturbations

Scenarios

sting Gas ds? = 22(n)((1 +2)dn? — [(1 — 20)5; + hyldx'dx’) .

Cosmology

S-Brane

Bounce Inserting into the perturbed Einstein equations yields
Inflation?

Conclusions <|¢(k)‘2> = 167T2G2k_4<6T00(k)5T00(k)>7

(Ih(K)[?) = 1672 GPKk=*(5T' (K)o T';(K)) .
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Alternatives
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IieRlElE Key ingredient: For thermal fluctuations:

Perturbations
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cenarios
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String Gas <p> RG v
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berger

IieRlElE Key ingredient: For thermal fluctuations:

Perturbations

Scenarios <5 2> _ EC
String Gas P RG v
Cosmology . . . . X
< Brane Key ingredient: For string thermodynamics in a compact
Bounce Space
Inflation?
Conclusions Rz 83

Cy~o- /s
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R. Branden- Power spectrum of cosmological fluctuations

berger

Introduction
Perturbations P¢(k) — Ssz_1 < |(sp(k)‘2 >
;c‘enar:s — 8G2k2 < (5,\/’)2 >R

ring Gas
Cosmology = 8G2k_4 < ((Sp)2 >R
S-Brane

ounce T 1
B ! _ 862—3—
Inflation? 55 1 — T/ TH

Conclusions
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String Gas
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S-Brane
Bounce

Inflation?

Conclusions

Power spectrum of cosmological fluctuations

Po(k) = 8G?k™' < |dp(k)|? >
= 8G?k? < (0M)? >R
= 8G*k* < (6p)? >R

T 1
_ 2 1
- &G B1-T/Ty

Key features:

o scale-invariant like for inflation
o slight red tilt like for inflation
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Spectrum of Gravitational Waves
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1672 G2k~ < | Tj(k)[? >
= 167°G*k~* < |T{(R)? >

Introduction
Perturbations

Scenarios

167r262€13(1 —T/TH)
S

String Gas ~
Cosmology
Bounce Key ingredient for string thermodynamics
Inflation?
Conclusions 2 T
<|THR)P >~ g (1 = T/ Thy)
S
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1672 G2k~ < | Tj(k)[? >
= 167°G*k~* < |T{(R)? >

Introduction

Perturbations

Scenarios 2 D T

String Gas ~ 1 67T G 5_3(1 - T/ TH)

Cosmology S

Bounce Key ingredient for string thermodynamics

Inflation?

Conclusions < ‘T(R)|2 S Ay T (1 _ T/T )
/ BR* &

Key features:

o scale-invariant (like for inflation)
@ slight blue tilt (unlike for inflation)
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BICEP-2 Results

Alternatives .

R. Branden- (] B2xB2
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0.04} R
o
String Gas §_ 0.03
Cosmology ‘E‘
q
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=
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String Gas Consistency Relation

Alternatives

R. Branden-
berger

Introduction

Perturbations

Scenarios r= (1 _ 7\-)2

String Gas
Cosmology

n ~ —(ns—1)(27T - 1)

Bounce

Inflation?

Conclusions Where 7\- = T/ TH :
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Alternatives

R. Branden-

berger Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

iroduction @ winding modes prevent expansion
Perturbations .
© momentum modes prevent contraction

Scenarios
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Conclusions

53/77



Moduli Stabilization in SGC

Alternatives
R. Branden-

berger Size Moduli [S. Watson, 2004; S. Patil and R.B., 2004, 2005]

Hitoduction o winding modes prevent expansion

Perturbations .

e @ momentum modes prevent contraction

String Gas 0 — Ve(R) has a minimum at a finite value of

Cosmology R R ;

S-Brane ’ = i

Hounee @ in heterotic string theory there are enhanced symmetry

Inflation?

states containing both momentum and winding which
are massless at Ry,

o — Veff(Rmin) =0
@ — size moduli stabilized in Einstein gravity background

Conclusions
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Moduli Stabilization in SGC |l

Alternatives

R. Branden-
berger

Introduction

Perturbations

o Shape Moduli [E. Cheung, S. Watson and R.B., 2005]

String Gas @ enhanced symmetry states

Cosmology

S-Brane @ — harmonic oscillator potential for 6

Bounce

Inflation? @ — shape moduli stabilized

Conclusions
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Dilaton stabilization in SGC

Alternatives

R. Branden-
berger

o The only remaining modulus is the dilaton

o Make use of gaugino condensation to give the dilaton a
potential with a unique minimum

Introduction
Perturbations

Scenarios

String Gas o — diltaton is stabilized

Sy o Context: Perturbative EgxEg superstring theory.

o Hidden sector gauge group becomes strongly coupled
at a scale p.

o At this scale gaugino condensation sets in.

o NB: Dilaton stabilization is consistent with size
stabilization [R. Danos, A. Frey and R.B., 2008]

S-Brane
Bounce

Inflation?

Conclusions

55/77



Supersymmetry Breaking in SGC

Alternatives
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Introduction

Perturbations @ Gaugino condensation scale .

’ ol 3
Scenarios @ Gravitino mass m3/2 ~ '/\It]_Z
String Gas !
Cosmology

e o Supersymmetry breaking scale given by M2 ~ £

M,
e o TeV scale gravitino mass implies high scale
supersymmetry breaking.

o NB: consistent with moduli stabiliation.

Inflation?

Conclusions
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Challenge for String Gas Cosmology

Alternatives

R. Branden-
berger

Introduction

Perturbations

o o Provide background dynamics of the Hagedorn phase.

String Gas o Einstein gravity and dilaton gravity do not apply (do not
o obey symmetries of string theory).

o Possible starting point: double field theory (Hull and
Zwiebach, 2009).

S-Brane
Bounce

Inflation?

Conclusions
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@ S-Brane Bounce from String Theory
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S-Brane
Bounce

Inflation?

Conclusions

o Type Il superstring theory compactified on

M = S'(Ry) x T3 x Fg,

o Euclidean time radius Ry = /(2r).

o Gravitomagnetic fluxes threading the Euclidean time
cycle and cycles of the internal space.

o Leads to T-duality about the Euclidean time cycle
(thermal duality)

Z(B) = Z(B3/8).
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Introduction
Perturbations
Scenarios

String Gas
Cosmology

S-Brane
Bounce

Inflation?

Conclusions

o Type Il superstring theory compactified on

M = S'(Ry) x T® x Fsg,
o Euclidean time radius Ry = /(2r).
o Gravitomagnetic fluxes threading the Euclidean time
cycle and cycles of the internal space.
o Leads to T-duality about the Euclidean time cycle
(thermal duality)

Z(B) = Z(B3/8).

o Large T2 — effective field theory analysis under good
control.
o Assumption: weak string coupling.
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S-Brane at the Self-Dual Temperature

Alternatives
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berger

o At the critical temperature: thermal winding states
Perturbations become maSSIGSS

Scenarios @ enhanced gauge symmetry at 5 = .

Cosmoigy o Enhanced symmetry states enter the effective low
S-Brane energy action for the light degrees of freedom as an
founce S-brane.

o S-brane: space-like topological defect: p = 0, p < 0.

Introduction

Inflation?

Conclusions
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S-Brane at the Self-Dual Temperature

Alternatives

R. Branden-
berger

@ At the critical temperature: thermal winding states
become massless.

Introduction

Perturbations
Scenarios @ enhanced gauge symmetry at 5 = .
Cosmoigy o Enhanced symmetry states enter the effective low
S-Brane energy action for the light degrees of freedom as an
Bounce
: S-brane.
Inflation?
Conclusions o S-brane: space-like topological defect: p =0, p < 0.

@ S-brane mediates violation of Null Energy Condition.
@ S-brane allows for cosmological bounce.
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Effective Action

Alternatives

. Branden- o Low energy effective action

berger

Introduction
Perturbations

Scenarios S = /d4X\/ —g[e_2¢(§ + 2(V¢)2) L P] e SB,

String Gas
Cosmology

o Pressure:
S-Brane
Bounce

Inflation? e_“7|
. P =
Conclusions /BC

Z(|ol).
o S-brane action:

S = n/d“x he 2%5(r — 7p),
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Background Cosmology

Alternatives
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Introduction

Perturbations matter domination

Scenarios 3

String Gas
Cosmology

radiation domination

S-Brane /
Bounce

Inflation?

Y

Conclusions

radiation domination

matter domination
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Background Cosmology

Alternatives

R. Branden- -
Wl Phases:

©

Matter phase of contraction: supersymmetry broken
Radiation phase of contraction: supersymmetry broken.

Introduction

Perturbations

©

Scenarios

e o Radiation/dilaton phase of contraction: supersymmetry
Cosmology reS'[OI‘ed.

B S-brane bounce

Bounce
Radiation/dilaton phase of expansion: supersymmetry
Conclusions UnbrOken.

Radiation phase of expansion: supersymmetry broken.

o Current matter phase of expansion: supersymmetry
broken.

©

Inflation?

©

©
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Introduction

BBl Matching two solutions of Einstein’s equations across a
e brane. The following conditions must be satisfied:

String Gas
Cosmology

o Induced metric continous
S-Brane

Bounce @ extrinsic curvature jumps by a value corresponding to
et the amplitude of the S-brane source.

Conclusions
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Matching Conditions in S-Brane Bounce

Alternatives

R. Branden-
berger

Introduction Work in the string frame and in longitudinal gauge.
Perturbations
S ds® = N(7,x)?dr? — A(7,x)?dx?

String Gas
Cosmology

o Continuity of the metric.

o o Continuity of the time derivative of the metric.
Gonclusions o Continuity of the dilaton ¢.

o Jumpin ®': Ad'/N = k/2

S-Brane
Bounce

65/77



Combining the Results
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@ Growing mode of ¢ at the end of the matter-dominated

Introduction

Perturbations phase of contraction has a scale-invariant spectrum.
Scenarios @ Scale-invariant spectrum of both modes in the
e radiation-dilaton phase of contraction is induced.
s 8rane @ Spectrum preserved on large scales through the
ounce

: bounce.
Inflation?
Conclusions o ( constant on super-Hubble scales during the

expanding phases.
@ — scale-invariant spectrum of ¢ at late times.
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Challenge for Matter Bounce Cosmology

Alternatives

R. Branden-
berger

o BKL instability to the growth of anisotropies.

nifedueton o Ad hoc solution: add Ekpyrotic scalar field which
FeriBEons dominates after the phase of matter domination in the
s contracting phase (J. Erickson et al, hep-th/0312009).

Cosmology o An Ekpyrotic scalar field with Galileon type kinetic term
S-Brane

Bounce can yield a nonsingular bounce (Y. Cai, D. Easson and
Inflation? RB, arX|V12062382)

conclusions o The scale-invariant spectrum of cosmological
perturbations is preserved (Y. F. Cai, E. McDonough,

F. Duplessis and R. H. Brandenberger, JCAP 1310, 024
(2013)).

Scenarios
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Challenges for the Inflationary Paradigm

Alternatives

R. Branden-
berger

Does not eliminate cosmological singularity.
— not a theory of the very early universe.

Uses low energy field theory framework in a realm
Costmology where this theory breaks down.

Trans-Planckian problem for cosmological fluctuations.

Inflation? — analysis of cosmological fluctuations is based on
Conclusions incomplete physics.

Not robust against our ignorance of what solves the
cosmological constant problem.

Introduction

o

Perturbations

Scenarios

©

S-Brane
Bounce

© ©

©
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Zones of Ignorance
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Introduction

Perturbations post

inflation

Bounce

Inflation? inflation

» ¢ super—Planck density ¢ s

- Hubble radios

/- regions of ignorance
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Initial Conditions for Inflation

Alternatives
R. Branden-
berger
Introduction

Perturbations

Scenarios

—— In the case of large field inflation the slow roll trajectory is an
Cosmology attractor in initial condition space, even in the presence of

S-Brane

s linear cosmological perturbations.

Inflation?

Conclusions
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It has proven very difficult to embed inflation into a UV
complete theory, e.g. superstring theory.

Introduction
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Scenarios o No de Sitter ground states in supergravity (G. Gibbons,
S 1985; G. Gibbons, hep-th/0301117).
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It has proven very difficult to embed inflation into a UV
complete theory, e.g. superstring theory.

Introduction

Perturbations

Scenarios @ No de Sitter ground states in supergravity (G. Gibbons,
e 1985; G. Gibbons, hep-th/0301117).

S Brane o Extended no-go theorem (J. Maldacena and C. Nunez,
iation? hep-th/0007018).

Conclusions @ Many explicit “constructions” of inflationary solutions

(e.g. D. Baumann and L. McAllister, arXiv:0901.0265)
in the context of Type |IB superstring theory.
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No-Go Theorems I

Alternatives

R. Branden-
berger

Introduction @ No-go theorem on inflation in heterotic string theory (S.
Perturbations Green at al., arXiv:11 100545)

Scenarios

String Gas o Constraints on inflation in Type IIA string theory (M.
Cosmology Herzberg et al, arXiv:0711.2512).

Bource o Singularities in the Type IIB constructions (I. Bena et al,
Inflation? arXiv:1206.6369).

Conclusions

@ No-go theorem on de Sitter in Type 1B (K. Dasgupta et
al, arXiv:1402.5112).
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Introduction

Perturbations

Scenarios

o Find a consistent UV embedding of inflationary
o cosmology.

e o Demonstrate the resolution of the conceptual problems
of inflation.

Inflation?

Conclusions
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o From the point of view of effective field theory inflation
S is at the present time the most complete scenario.

String Gas o But, inflation is not without its conceptual problems.
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Introduction
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e @ Superstring theory may force us to look beyond the
Bounce inflationary scenario.
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Conclusions

Alternatives

R randen- Q Therg are alternatives to cosmological inflation for
explaining the current data on CMB and LSS.

iesieon o From the point of view of effective field theory inflation

e is at the present time the most complete scenario.

o But, inflation is not without its conceptual problems.

e o Superstring theory may force us to look beyond the

Bounce inflationary scenario.

Inflation?

Scenarios

String Gas
Cosmology

Observations will tell: Focus on:

Conclusions

o non-Gaussianities

o amplitude and tilt of the spectrum of gravitational
waves.

@ running
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Conclusions Il

Alternatives

R. Branden-
berger

Introduction

Perturbations

o String Gas Cosmology: Model of cosmology of the very
g e early universe based on new degrees of freedom and
Cosmology new symmetries of superstring theory.

S-Brane

Bounce o Thermal string fluctuations lead to a scale-invariant
Inflation? spectrum of cosmological fluctuations with a blue tilt of
Conclusions the tensor modes.

Scenarios
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