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Cosmic History

i Big Bang e » The universe began as a hot and dense plasma
of particles in thermal equilibrium.
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‘, » Recombination (z &=1100): pT+e — H
iy Universe becomes transparent to CMB photons.

Photons mainly freestream.

» Radiation from first stars and quasars reionizes
the universe (z ~10-20) and ~10% of the
photons re-scatter.

PRESENT » We observe these photons at T~ 2.725 K.



ACDM: the “Standard” Model of Cosmology

Homogeneous background Perturbations

Qth,Qch2,QA77‘,6’ Ag,ng
* Baryonic matter: 5% * Nearly scale-invariant
* Cold dark matter: 27% * Gaussian

* Dark energy: 68%
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After March 2014 (BICEP2):
Do we need new parameters in our Standard Model?

Homogeneous background Perturbations
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From Temperature Anisotropies to
Polarization
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Polarization is generated
by Thomson scattering:
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CMB polarization: E-B decomposition

Represent CMB polarization on the sky by a traceless symmetric tensor 11,

E-mode: “curl-free” field

1

Hab — (vavb — §gabv2> ¢

B-mode: “divergence-free” field

1 1
Hab — (ieacvcvb + iebcvcva> Qb

This is the analog of the gradient/curl decomposition of a vector field



Generation of B-modes

Polarization is a spin-2 field: (Q +iU) () — T (Q £4U) (n)
(Q+iU) () = =" (Fum + 1Bom) 5 Yim (1)
Im

e Scalar sources + linear evolution mm E-modes.

e Gravitational waves (distorting space-time and creating a
CMB quadrupole) or non-linear evolution == B-modes.



How do primordial tensor modes affect the
CMB temperature and polarization spectra?
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Limits on tensor modes
from the temperature data

Tight constraint on the tensor-to-scalar ratio (r) from Planck temperature data:
r<0.11 (at the 95% CL).
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Polarization Predictions

TE and EE are not yet very informative, but they will be soon (with Planck)
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Connecting Theory with Observations

V(¢)

POWER SPECTRUM

1.5F

1.0

=
F 25| .

10™2

INFLATIONARY POTENTIAL

10~ 10”3 1072

k [Mpc™')
—
~
x
3
E
~
Ex
O
—~
+
<

10-!'

10000

1000 F

100

CMB POWER SPECTRUM

10 100 1000



Connecting Theory with Observations
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Connecting Theory with Observations
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Primordial B-modes and
Initial Curvature Power Spectrum reconstruction

_ NN W s~ O,
TTTTTTT

Initial Power spectrum [x10° ]

A O B N @)
T T

i L S
0.001 0.01 Planck temperature data +
k [Mpc_l] WMAP 9-year polarization +
DR11 BAO + SHOES H,,.
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Testing the single-field slow-roll
consistency relation

On CMB scales, the tensor power spectrum is predicted to be almost

a power-law in most models of inflation:

(k°/27%) Pr(k) = rAZ (k/ko)™

Prediction from single-field
slow-roll “consistency relation”:

ng = —r/8
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Testing the single-field slow-roll
consistency relation

“Delensing” is an algorithm that can separate the gravitational lensing
B-modes (non-Gaussian) from the tensor B-modes (Gaussian),

lowering the effective lensing. U. Seljak and C. Hirata (2003)
M. Kesden, A. Cooray and M. Kamionkowski (2003)
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Testing the single-field slow-roll
consistency relation

We might be able to distinguish the consistency relation from scale invariance
with a futuristic experiment such as the proposed “CMB Stage IV”.
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How do we know if a B-mode
measurement is primordial?

e Foregrounds/CMB can be separated by making observations
at different frequencies.



How do we know if a B-mode
measurement is primordial?

e Foregrounds/CMB can be separated by making observations
at different frequencies.

Is there a primordial signal in the BICEP2
measurement?

e The cross-correlation of BICEP2 and KECK maps with Planck
maps at different frequencies will help to shed light on this

guestion.
Analysis to appear very soon!
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Conclusions and Future Directions

» Using Cosmic Microwave Background observations, we learned that our
Universe can be described by a simple model ("' LCDM”).

» A primordial B-mode signal encodes a wealth of information about the
physics of the very early universe:

e The amplitude of the signal is directly related to the energy scale of inflation.

e The shape of the signal could test the basic assumptions of single-field and
slow-roll inflation (this would require “delensing” algorithms and an
experiment such as the proposed “CMB Stage IV”).

e A primordial B-mode signal would make the observed suppression in the
initial curvature power spectrum even more pronounced. Predictions for the
E-mode polarization could shed light on the origin of this suppression.

» A very difficult B-mode detection has been recently made.
An important question remains: Is there a primordial signal buried under this
measurement? (analysis to appear soon).



