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Main epochs of the Universe evolution

H = 2 where a(t) is a scale factor of an isotropic
homogeneous spatially flat universe (a
Friedmann-Lemaitre-Robertson-Walker background):

ds® = dt* — a*(t)(dx* + dy® + dz®) + small perturbations
The history of the Universe in one line: four main epochs
? — DS=—FIRWRD=—FLRWMD=—DS — ?

Geometry
: 1 2 :
|H|<<H2:>H:2—t:>H:§:> |H| << H?
Physics

p—p=p=p/3=pLp=p=—p
Duration in terms of the number of e-folds In(ay,/a;,)
> 60 ~ 55 38 0.3



Main advantages of inflation

1. Aesthetic elegance

Inflation — hypothesis about an almost maximally symmetric
(quasi-de Sitter) stage of the evolution of our Universe in the
past, before the hot Big Bang. If so, preferred initial
conditions for (quantum) inhomogeneities with sufficiently
short wavelengths exist — the adiabatic in-vacuum ones. In
addition, these initial conditions represent an attractor for a
much larger compact open set of initial conditions having a
non-zero measure in the space of all initial conditions.

2. Predictability, proof and/or falsification

Given equations, this gives a possibility to calculate all
subsequent evolution of the Universe up to the present time
and even further to the future. Thus, any concrete inflationary
model can be proved or disproved by observational data.



3. Naturalness of the hypothesis
Remarkable qualitative similarity between primordial and
present dark energy.

4. Relates quantum gravity and quantum cosmology to
astronomical observations

Makes quantum gravity effects observable at the present time
and at very large — cosmological — scales.

5. Produces (non-universal) arrow of time for our Universe
Origin — initial quasi-vacuum fluctuation with a fantastically
large correlation radius.



Present status of inflation

Now we have numbers.
P. A. R. Ade et al., arXiv:1303.5082

The primordial spectrum of scalar perturbations has been
measured and its deviation from the flat spectrum n, =1 in
the first order in [n; — 1| ~ N ! has been discovered (using
the multipole range ¢ > 40):
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Pg(k):/ ol )dk, A? = (2.207038) 10°° (-)

k ko

ko = 0.05Mpc !, ny— 1= —0.040 + 0.007

N.B.: The value is obtained under some natural assumptions,
the most critical of them is N, = 3, for N, = 4 many things
have to be reconsidered and n. ~ 1 is not excluded.



Comparison with some simple models
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Table 4. Constraints on the primordial perturbation parame!ers in the ACDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k. = 0.002 Mpc™".
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and 002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.



From "proving” inflation to using it as a tool

Simple (one-parameter, in particular) models may be good in
the first approximation (indeed so), but it is difficult to expect
them to be absolutely exact, small corrections due to new
physics should exist (indeed so).

Present status of inflation: transition from " proving” it in
general and testing some of its simplest models to applying
the inflationary paradigm to investigate particle physics at
super-high energies and the actual history of the Universe in
the remote past using real observational data on ng(k) — 1 and

r(k).
The reconstruction approach — determining curvature and
inflaton potential from observational data.

The most important quantities:
1) for classical gravity — H, H
2) for super-high energy particle physics — m? .



Generation of scalar and tensor perturbations
during inflation

A genuine quantum-gravitational effect: a particular case of
the effect of particle-antiparticle creation by an external
gravitational field. Requires quantization of a space-time
metric. Similar to electron-positron creation by an electric
field. From the diagrammatic point of view: an imaginary part
of a one-loop correction to the propagator of a gravitational
field from all quantum matter fields including the gravitational
field itself, too.

The effect can be understood from the behaviour of a light
scalar field in the de Sitter space-time.



For scales of astronomical and cosmological interest, the effect
of creation of metric perturbations occurs at the primordial de
Sitter (inflationary) stage when k ~ a(t)H(t) where k = |k|
(the first Hubble radius crossing).

After that, for a very long period when k < aH until the
second Hubble radius crossing (which occurs rather recently at
the radiation or matter dominated stages), there exist one
mode of scalar (adiabatic, density) perturbations and two
modes of tensor perturbations (primordial gravitational waves)
for which metric perturbations are constant (in some gauge)
and independent of (unknown) local microphysics due to the
causality principle.

N.B. This has to be rechecked if the local Lorentz invariance is
abandoned.



Quantum-to-classical transition

In the super-Hubble regime in the coordinate representation:

ds? = dt? — a*(t)(6im + him)dx'dx™, I,m=1,2,3

2
him = 2C(1)0m + Y g@)(r) &l
a=1

(a) elm(a) -1

Im

e,l(a) =0, g(a?, ell@) — 0, e

m

¢ describes primordial scalar perturbations, g — primordial
tensor perturbations (primordial gravitational waves (GW)).



This behaviour makes an effective quantum-to-classical
transition possible: in fact, metric perturbations hy,, are
quantum (operators in the Heisenberg representation) and
remain quantum up to the present time. But, after omitting of
a very small part, decaying with time, they become commuting
and, thus, equivalent to classical (c-number) stochastic
quantities with the Gaussian statistics (up to small terms
quadratic in (, g).

Remaining quantum coherence: deterministic correlation
between k and —k modes - shows itself in the appearance of
acoustic oscillations (primordial oscillations in case of GW).



FLRW dynamics with a scalar field

In the absence of spatial curvature and other matter:
K2 éz
H=— | —+V
2
. [{/ .
H=——¢
> 9
¢+ 3Ho+ V'(¢) =0

where k2 = 871G (I = ¢ = 1).



Inflationary slow-roll dynamics

Slow-roll occurs if: |¢| < H|p|, ¢? < V, and then |H| < H2.
Necessary conditions: |V'| < kV, |V"| < k*V. Then

2 . ! SRV
H2zﬂ ¢z—i NE|nﬁ%/£2 —d¢
37 Jo

First obtained in A. e.z Starobinsky, Sov. Astron. Lett. 4, 82
(1978) in the V = % case and for a bouncing model.



Spectral predictions of the one-field inflationary
scenario in GR

Scalar (adiabatic) perturbations:
OHY GHY 1287GPV}
am2g2  7|H|y 3V}

Pc(k)

where the index k means that the quantity is taken at the
moment t = t, of the Hubble radius crossing during inflation
for each spatial Fourier mode k = a(t,)H(t,). Through this
relation, the number of e-folds from the end of inflation back
in time NV(t) transforms to N(k) = In % where

ke = a(ts)H(ts), tr denotes the end of inflation.

The spectral slope

dinPe(k) 1 [V A%
K—1=— 2= — |2k 3k
ns(k) dink /42( v, >\,



Tensor perturbations (A. A. Starobinsky, JETP Lett. 50, 844
(1979)):

16 GH? dinP,(k 1 /V\?
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The consistency relation:

Tensor perturbations are always suppressed by at least the
factor ~ 8/N(k) compared to scalar ones. For the present
Hubble scale, N(ky) = (50 — 60).



Potential reconstruction from scalar power

spectrum
In the slow-roll approximation:
V3 1272
Ve = CP:(k(t(0))), C= p;

Changing variables for ¢ to N(¢) and integrating, we get:

1 K4 dN
V() 122 / P(N)

dinV
= [ dny/
ko / dN
An ambiguity in the form of V(¢) because of an integration

constant in the first equation. Information about P, (k) helps
to remove this ambiguity.




In particular, if primordial GW are not discovered in the order
ng — 1:
r<8lns —1/~0.3,
N\ 2 " r
then ()" < |¥7|, |ng| = £ < |ns — 1|, |ng|N < 1.

This is possible only if V = V40V, [0V]| <V, —a
plateau-like potential. Then

K4 V2 dN
SV(N) = 0

CdN o [d(5V(N))
J VW dN
Here, integration constants renormalize V; and shift ¢. Thus,

the unambiguous determination of the form of V/(¢) without
knowledge of Pg(k) becomes possible.

Kp =



~ —0.04 forall N =1 — 60 and

In particular, if n, — 1 = _%

r < 8|ns — 1|, then

V(¢) = Vo (1 — exp(—akg))
with ak¢ > 1 but o not very small, and

8

a2 N2




The simplest models producing the observed scalar
slope

[. In the Einstein gravity:

m2¢2
-2

V()

55

ma18x107° (ﬁ) Mp ~ 2 x 10'2 GeV

2 8
ng—1= N ~ —0.036, r= N ~ 0.15

Hys(N = 55) = 1.4 x 10" GeV



[1. In the modified, scalar-tensor gravity:

R2
f(R)=R+ g1

55
M=26x10"° (W) Mp ~ 3 x 10'2 GeV

12
~ —0.036, r= - ~ 0.004

ng—1=— e

N

Hys(N = 55) = 1.4 x 10" GeV

The same prediction from a scalar field model with

_ At , .. .
V(¢) = =~ at large ¢ and strong non-minimal coupling to
gravity ER¢? with € < 0, [£| > 1, including the
Brout-Englert-Higgs inflationary model.



Note similar predictions for inflaton masses and essentially the
same prediction for Hys.

Inflation + observations suggest the existence of curvatures in
the past H ~ 10'* GeV ~ 10728 cm ™! and the inflaton mass
m ~ 10" GeV, significantly less than the GUT scale

10'° — 10'® GeV.

Often another energy scale £ = (73c®V)Y* ~ \/HMp, is
introduced which is indeed of the order of the GUT scale. But
is this quantity physical?



Let us apply the same method to water and discover
the characteristic energy scale of water:
E = (1-2; x c?)/* = 45keV.
cm
Compete nonsense!

So, if this method leads to a totally misleading result for water,
could it be better for primordial dark energy driving inflation?



Visualizing small differences in the number of
e-folds
e ) is

Local duration of inflation in terms of N;,; = In (
different is different point of space: Ny, = Nio:(r). Then

C(r) = O Nyor (1)

—

—

Correct generalization to the non-linear case: the space-time
metric after the end of inflation at super-Hubble scales

ds? = dt? — a%(t)e?M=(D(dx? + dy? 4 dz?)

First derived in A. A. Starobinsky, Phys. Lett. B 117, 175
(1982) in the case of one-field inflation.



T, = (2.72548 = 0.00057)K
9 (/ Za(myim 8 (/
< agmapnm >= Celppr O mny

Theory: averaging over realizations.
Observations: averaging over the sky for a fixed /.

For scalar perturbations, generated mainly at the last
scattering surface (the surface or recombination) at

7155 ~ 1090 (the Sachs-Wolfe, Silk and Doppler effects), but
also after it (the integrated Sachs-Wolfe effect).

For GW — only the ISW works.



For ¢ < 50, neglecting the Silk and Doppler effects, as well as
the ISW effect due the presence of dark energy,

AT(0, 1 15
% = _EC(fLSS,H, ¢) = _EdeOt(rLSSﬁ’ ?)
For n. =1, 2
U+1)Crs = 2P,

25
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Where is the primordial GW contribution to CMB

temperature anisotropy?

For 1 < 7 < 50, the Sachs-Wolfe plateau occurs for the
contribution from GW, too:

T 487°

assuming n, = 1 (A. A. Starobinsky, Sov. Astron. Lett. 11,
133 (1985)). So,

C = Cg,s + Cg,g = (1 + 0.775F)Cg,5

For larger ¢ > 50, ((¢ 4 1)C; s grows and the first acoustic
peak forms at ¢ ~ 200, while /(¢ + 1)C, , decreases quickly.
Thus, the presence of GW should lead to a step-like
enhancement of ((( + 1)C, for ¢ < 50.



e+1)e, 2 (KA

6000

5000

g

g

g

g

50 100 150 ' 200

0.06
Planck low-¢ data points + BICEP2 data points +
Power law PPS + r [Planck + WP] 0.05 | Power law PPS + r [Planck + WP]
Power law PPS + r [Planck + WP + BICEP2)] Power law PPS + r [Planck + WP + BICEPZ)]
Broken PPS + r [Planck + WP+ BICEP2] — 0.04 [ Broken PPS + r [Planck + WP + BICEP2]
Tanh step PPS + r [Planck + WP + BICEP2] X 003 Tanh step PPS + r [Planck + WP + BICEPZ] ]
S
o” 002
=
7 001
<
<
0
-0.01
K -
1 10 00 1000 002 250 300




The most critical discordance between WMAP and Planck
results from one side and the BISEP2 ones from the other:
no sign of GW in the CMB temperature anisotropy power
spectrum.

Instead of the ~ 10% increase of /(¢ + 1)C, over the multipole
range 2 < [ < 50, a ~ 10% depression is seen for
20 < ¢ < 40 (see e.g. Fig. 39 of arXiv:1303.5076).

The feature exists even if r << N ! but the presence of
r ~ 0.1 makes it larger.

More detailed analysis in D. K. Hazra, A. Shafieloo,

G. F. Smoot and A. A. Starobinsky, JCAP 1406, 061 (2014),
arXiv:1403.7786 :

the power-law form of P (k) is excluded at more than 30 CL.



Other local features in the same range

The effect of at least the same order: an upward wiggle at
(' ~ 40 (the Archeops feature) and a downward one at / ~ 22.

Lesson: irrespective of an analysis of foreground
contamination in the BISEP2 result, features in the anisotropy

spectrum for 20 < ¢ < 40 confirmed by WMAP and Planck
should be taken into account and studied seriously.



A more elaborated class of model suggested by previous
studies of sharp features in the inflaton potential caused, e.g.
by a fast phase transition occurred in another field coupled to
the inflaton during inflation:

D. K. Hazra, A. Shafieloo, G. F. Smoot and A. A. Starobinsky,
JCAP 1408, 048 (2014); arXiv:1405.2012

In particular, the potential with a sudden change of its first
derivative:

V(9) = 76° + AP (¢ — o) 0(¢ — o)

which generalizes the exactly soluble model considered in

A. A. Starobinsky, JETP Lett. 55, 489 (1992) produces
—2AIn L = —11.8 compared to the best-fitted power law
scalar spectrum, partly due to the better description of wiggles
at both / ~ 40 and ( ~ 22.



f(R) gravity
The simplest model of modified gravity (= geometrical dark
energy) considered as a phenomenological macroscopic theory
in the fully non-linear regime and non-perturbative regime.

_ 1 4
_ 167TG/f(R)\/—gdx+5m

f(R)=R+F(R), R=R"
Here f”(R) is not identically zero. Usual matter described by
the action S, is minimally coupled to gravity.

Vacuum one-loop corrections depending on R only (not on its
derivatives) are assumed to be included into f(R). The
normalization point: at laboratory values of R where the
scalaron mass (see below) m, ~ const.

Metric variation is assumed everywhere. Palatini variation
leads to a different theory with a different number of degrees
of freedom.



Field equations

1 v v v 14 14
oc (R —55”/?> — (T iy + T omy + T ogy) >
where G = Gy = const is the Newton gravitational constant
measured in laboratory and the effective energy-momentum
tensor of DE is

1 ) i .
87GT,, pgy = F'(R) R;;—§ F(R)o;;+(v,,,v" — o,’;va,V/) F'(R) .

Because of the need to describe DE, de Sitter solutions in the
absence of matter are of special interest. They are given by
the roots R = Rys of the algebraic equation

Rf'(R) = 2£(R) .



Transformation to the Einstein frame and back

In the Einstein frame, free particles of usual matter do not
follow geodesics and atomic clocks do not measure proper
time.

From the Jordan (physical) frame to the Einstein one:

f'R
g/’L:-u = f,g/{w K’¢ \/7|n fl (/ 2f12

where k2 = 871G.
Inverse transformation:

R = (Jéﬁ; d‘gff) + 4k? V((/))> exp (\/gms)
f(R) = (x@ﬁd‘;(/f) + 2k? V((/))) exp (2,\/?@(/))

V() should be at least C.




Analogues of large-field (chaotic) inflation: F(R) ~ R*A(R)
for R — oo with A(R) being a slowly varying function of R,

namely

AR <0 R < A2

In particular,
R2
f(R) ~
() 6m2|n2(R/m2)

for R >> m? to have the same .. r as for V = m?¢? /2.

Analogues of small-field (new) inflation, R ~ R;:

2F(Ry)

2F(Ry)
Ry '

R?

F'(Ry) = , F'(R) ~

Thus, all inflationary models in f(R) gravity are close to the
simplest one over some range of R.



Conclusions

» Inflation is being transformed into a normal physical
theory, based on some natural assumptions confirmed by
observations and used to obtain new theoretical
knowledge from them.

» First quantitative observational evidence for small
quantities of the first order in the slow-roll parameters:
ns(k) — 1 and r(k).

» The quantitative theoretical prediction of these quantities
is based on gravity (space-time metric) quantization and
requires very large space-time curvature in the past of our
Universe with a characteristic length only five orders of
magnitude larger than the Planck one.



» Regarding CMB temperature anisotropy, small features in
the multipole range 20 < / < 40 at the accuracy level
~ 1 K which mask the GW contribution to CMB
temperature anisotropy have to be investigated and
understood. They may reflect some fine structure of
inflation (i.e. fast phase transitions in other quantum
fields coupled to an inflaton during inflation).

» Though the Einstein gravity plus a minimally coupled
inflaton remains sufficient for description of inflation with
existing observational data, modified (in particular,
scalar-tensor or f(R)) gravity can do it as well.
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