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Overview

Updates since 2013

The low-` likelihood

The high-` likelihood

Part 1: Power spectra

The Planck HFI power spectra

Consistency checks and residuals

Part 2: Likelihood

Likelihood construction

Verification
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What’s new

More data: 48/29 months of LFI/HFI observations,
enabling further checks

Improved data processing:
systematics removal, calibration, beam reconstruction

Improved foreground model

Larger sky-fraction used for analysis

More robust to systematics:
based on half-mission cross power spectra

The 2014 analysis includes polarization
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The Planck hybrid likelihood

At low multipoles, ` < 30:

Exact pixel space likelihood,

L(θ) ∝ exp
(
−1/2 dC−1dT

)
.

Numerically expensive, evaluations take O(`6max) operations.

At high multipoles, ` ≥ 30:

We use a fiducial Gaussian approximation, now generalized
to include polarization

→We work with a pre-compressed data vector:
the empirical power spectrum coefficients

4



Low-` likelihood data set∗
Temperature:

We use the Commander solution based on
Planck, WMAP, and the 408 MHz Haslam
map,
fSKY ≈ 93%.

Polarization:

We use the Planck 70 GHz full mission map
without survey 2, 4,
cleaned with 30 and 353 GHz maps,
fSKY ≈ 47%.

∗Preliminary results
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Low-` power spectra∗

∗Preliminary results
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Low-` results∗

The low-` likelihoods helps
breaking the degeneracy between
τ and AS.

Using 353 GHz for dust cleaning,
WMAP constraints become
consistent with Planck.

Constraints on τ will improve
substantially with large scale HFI
data.

green: Planck polarization

blue:
WMAP polarization,

353 GHz cleaned

red: Null test

∗Preliminary results
7

τ



High-` masks: Temperature

100 GHz:
Galactic + point source + CO
fSKY ≈ 66%

143 GHz:
Galactic + point source
fSKY ≈ 57%

217 GHz:
Galactic + point source + CO
fSKY ≈ 47%
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High-` masks: Polarization

100 GHz:
Galactic
fSKY ≈ 70%

143 GHz:
Galactic
fSKY ≈ 50%

217 GHz:
Galactic
fSKY ≈ 41%
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Foreground subtracted TT power spectrum∗
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∗Preliminary results
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Foreground subtracted TE power spectrum∗

Disclaimer: There are unmodeled residual systematics
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Foreground subtracted EE power spectrum∗

Disclaimer: There are unmodeled residual systematics
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Consistency check: TT frequency power spectra∗

500 1000 1500 2000 2500

ℓ

−60

−30

0

30

60

∆
D

T
T

ℓ
[µ
K

2
] 

1
0

0
x
1

0
0

500 1000 1500 2000 2500

ℓ

−60

−30

0

30

60
∆
D

T
T

ℓ
[µ
K

2
] 

1
4

3
x
1

4
3

500 1000 1500 2000 2500

ℓ

−60

−30

0

30

60

∆
D

T
T

ℓ
[µ
K

2
] 

1
4

3
x
2

1
7

500 1000 1500 2000 2500

ℓ

−60

−30

0

30

60

∆
D

T
T

ℓ
[µ
K

2
] 

2
1

7
x
2

1
7

∗Preliminary results
13



Consistency check: polarization given temperature spectra∗

Conditional spectra and covariances:

CPP
` |CTT

`
= 〈CPP

` 〉+CPP,TTC
−1
TT,TT (C

TT
` − 〈CTT

` 〉)
CPP,PP |CTT

`
= CPP,PP −CPP,TTC

−1
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Data selection for the high-` likelihood

Frequency beam [arcmin] noise [µK2]∗ `-range

100 GHz 9
DTT

`=1800

b2`=1800
≈ 20000

T: 30 ≤ ` ≤ 1200
P: 30 ≤ ` ≤ 1000

143 GHz 7
DTT

`=1800

b2`=1800
≈ 700

T: 30 ≤ ` ≤ 2000
P: 30 ≤ ` ≤ 2000

217 GHz 5
DTT

`=1800

b2`=1800
≈ 400

T: 30 ≤ ` ≤ 2500
P: 500 ≤ ` ≤ 2000

100 × 143
T: ∅
P: 30 ≤ ` ≤ 1000

100 × 217
T: ∅
P: 500 ≤ ` ≤ 1000

143 × 217
T: 30 ≤ ` ≤ 2500
P: 500 ≤ ` ≤ 2000

∗D` = `(`+ 1)/2π C`, b`: beam
15



The high-` likelihood
We construct a fiducial Gaussian likelihood, using

a parametric foreground model to marginalize over
(12 parameters)
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The high-` likelihood
We construct a fiducial Gaussian likelihood, using

a parametric foreground model to marginalize over
noise estimates of the data, obtained from half-ring difference
maps, corrected for bias using the difference between auto and
cross spectra
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The high-` likelihood
We construct a fiducial Gaussian likelihood, using

a parametric foreground model to marginalize over
noise estimates of the data, obtained from half-ring difference
maps, corrected for bias
a set of best fit power spectra at each frequency
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The high-` likelihood
We construct a fiducial Gaussian likelihood, using

a parametric foreground model to marginalize over
noise estimates of the data, obtained from half-ring difference
maps, corrected for bias
a set of best fit power spectra at each frequency
analytical approximations to compute C` covariance matrices

Binned matrix with
2300×2300 elements

Condition number:
O(1011)
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Likelihood verification on simulations
We computed cosmological parameters from 100 simulated HFI
data sets, marginalizing over 12 foreground parameters.
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Likelihood verification on data

We checked that results are robust with respect to

different likelihood code implementations:
Plik, Camspec, Hillipop, Mspec, Xfaster

the multipole range used for analysis

removing individual frequency power spectra

the choice of analysis masks

different foreground treatments:
parametric modeling vs. map based cleaning
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