

PERIMETER INSTITUTE FOR THEORETICAL PHYSICS

Google: Defining Gravity, Defying Gravity

A SEARCH FOR ULTRA-LIGHT A-(O)SUSING PRECISION COSMOLOGICAL DATA

Collaborators

Renée Hlozek, Daniel Grin & Pedro Ferreira arXiv:1410.2896 arXiv:1403.4216

Using the CMB and large scale structure

Brandon Bozek, Joseph Silk & Rosemary Wyse arXiv:1409.3544

Using high-z galaxies and reionisation

Outline

♦ Introduction to axion cosmology.
♦ Precision constraints.
♦ Small scales and high redshifts.
♦ Using axion DM to probe inflation.

Masses and effects of axions

Introduction to axion cosmology

What are axions? "Normally" the QCD axion: Peccei & Quinn; Weinberg; Wilczek, ('77, '78) $d_n \leq 2.9 \times 10^{-26} e \text{ cm} \Rightarrow m_a^2 \sim \Lambda_{\text{QCD}}^4 / f_a^2$ Solves strong CP- problem and passes astrophysical tests if: $10^9~{
m GeV} \lesssim f_a \lesssim 10^{17}~{
m GeV}$ Arvanitaki et al (2010) Raffelt (2006) Generically: axions are ultra-light pseudo-scalar PNGBs. Many axions may arise in string theory^{*}, with log-dist masses. $m_a^2 \sim \frac{\mu^4 e^{-c \operatorname{Vol}_p}}{f_c^2}$ See Burgess and e.g. Svrcek & Witten (2006) Silverstein talks. Arvanitaki et al (2010)

Two scales one mighe one for any first to theory.

Introduction to axion cosmology

Evolution of the axion. High occupation no. \rightarrow classical field.

Stage I: SSB at high scale f_a. Random displacement. PNGB.

Stage II: non-pert effects \rightarrow mass. Friction \rightarrow const. density.

Stage III: Oscillation energy scales with volume \rightarrow matter.

http://www.hep.ph.ic.ac.uk/cms/physics/higgs.ht

Friction decreases with time $H_{\rm BBN} \sim 10^{-15} {\rm ~eV}$ $H_0 \sim 10^{-33} {\rm ~eV}$

Misalignment production

Axion production is non-thermal: the misaligment-mechanism.

$$\Omega_a = \Omega_a(m_a, \phi_i)$$

Modeling perturbations

Modified version of CAMB & KG background: shoot for density.

$$\frac{\dot{P}}{\dot{\rho}} := c_{\rm ad}^2 = -1 + \frac{2m_a}{3\mathcal{H}}\sqrt{\frac{1-w_a}{1+w_a}}$$

Early times: compute w. Late times: set w=0 on average. Perts: continuity + Euler with entropy perts. Effective fluid.

$$w_a \Gamma_a = (1 - c_{\rm ad}^2)(\delta_a + 3\mathcal{H}u_a/k)$$

Eliminate. Rest frame solution. Boosts.

Solve and average oscillations.

$$k^2/4m_a^2a^2$$

 $1 + k^2/4m_a^2 a^2$

e.g. Hwang & Noh (2009)

Suppression of Power

"Poster-child" effect of ultra-light scalar DM.

Large sound speed. Jeans **Adapterid**iate losidatizers. **condidisp**eed Sappression geniathulasaks bitto tango at panorikath at latip diression distinct from WDM.

Cosmological observables

Magnitude of effect away from CDM fixed by mass and density.

CMB temperature: variation of density. RD era exp. rate changes peak heights.

Galaxy survey: variation of mass. Larger mass clusters on smaller scales.

Precision constraints

First the "money plot" summary:

 $\Omega_a/\Omega_d < 0.05$

(marginalised over all other parameters)

Precision constraints

Complicated degeneracy structure. Use *Multinest* to sample. "Stitch" prior regions with 2d importance sampling. (Checked

(Checked consistency against "quasifrequentist" approach.)

Precision constraints

Degeneracies with CDM and Lambda separate key effects.

Why light axions?

Ongoing with Ana Pop (see also Schive, Chiueh & Broadhurst 2014)

The "cusp-core" problem of standard CDM:

e.g. Wyse & Gilmore (2008)

[Data: Walker & Penarrubia, 2011]

 $m_a \sim 10^{-22}~{\rm eV}$ \rightarrow kpc cores from solitons. Linear modes all used. Need other probes to push into this regime.

Halo formation at high redshift

CDM: structure formation is hierarchical. Press & Schechter (1977) Axion de Broglie scale suppresses low mass and old objects.

Hubble and James Webb

Compute expected number of galaxies at high-z. Compare to HUDF and predictions for JWST.

Bouwens et al (2014) Windhorst et al (2006)

HUDF data z=6,7,8,10 JWST z=13

HUDF excludes 10^{-23} eV at >8 σ , JWST can reach 10^{-22} eV

Cosmic reionisation

Galaxies at high-z reionise the Universe. Axions cut HMF. τ computed using abundance matching. Vary models.

- Band: WMAP
- Planck changes?
- AdvACT/SPT3G: kSZ measure duration.

Calabrese et al (2014), Holzapfel talk

 10⁻²² eV in tension currently. 10⁻²¹ eV reachable in future.

→ Axion dwarf core solution testable with reionisation.

Planck (ish)-scale physics

Relic abundance gives constraints on effective decay const.

What are the predictions from string theory? Have we constrained any interesting models?

Isocurvature and inflation

Massless fields fluctuate \rightarrow graviton/axion perts depend on H_I. CMB constrains these modes \rightarrow bounds on fractions r and α .

Using DM to test inflaiton

ULAs: structure formation QCD: direct detection 10^{18} Black hole CMB (WMAP1) ower bound on deasion alloattractors 10¹⁷ super radiance 0.1 10^{16} **CASPEr:** Phase 2 CMB+LSS Too much isocurvature 10¹⁵ 0.01 New Window SPIDER Ω_a 10¹⁴ GeV $\epsilon_{eff} {=} 10^{-}$ CASPEr: Ideal Ω_d 10¹³ 0.001 $\epsilon_{eff} = 10^{-6}$ ADMX 10¹² $\epsilon_{eff} = 10^{-1}$ 10^{11} Too much dark matter 10^{-4} **Classic Window** 10^{10} (symmetry restored after inflation) 10⁹ . 10^{-5} -20 2 10 12 Δ 6 8 10^{-2} 10^{-1} $\log_{10}(m_a/10^{-30} \text{ eV})$ r

Dwarf cores mass forbids inf r. Imply synthetic?

See Sloth talk

PQ inflaton attractor: CASPEr and Spider detections poss.

See Linde talk

Concluding remarks

If any searches, e.g.: CMB and LSS High-z galaxies Reionization Dwarf density profiles Direct detection

complementary

Reveal evidence of high f axions: cosmology - density QCD - coupling

Then:

tensors cannot be single-field slow-roll inflation