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Resonant/near resonant systems

e What is a resonance between 2 planets?

— P2/Py = p/q (p, q integers)
— Example: 2/1
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Kepler near-resonant planets

o Distribution of period ratio in Kepler data
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e Peaks at resonances — convergent migration (P,/P; \))

e Peaks slightly shifted to the right
(Systems near but outside of resonances)
Lissauer et al. (2011), Fabrycky et al. (2014)

— tidal dissipation?
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Kepler near-resonant planets

e Other possible explanations for the shift:

— protoplanetary disk - planets interactions
Rein (2012), Baruteau & Papaloizou (2013)

— planetesimals - planets interactions
Chatterjee & Ford (2015)

— in-situ formation of planets
Petrovitch, Malhotra, Tremaine (2013), Xie (2014)
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Why tidal dissipation?

e Distribution of period ratio close to resonances (2:1 + 3:2)
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Why tidal dissipation?

e Distribution of period ratio close to resonances (2:1 + 3:2)
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e KS-tests
— Close-in vs Farthest: 0.08%
— Close-in vs Intermediate: 3.5%
— Intermediate vs Farthest: 10%
Delisle, Laskar (2014)

ean-Baptiste DELISLE (Geneva Observatory - Dissipation in resonance June 30, 2015 5/12



Analytical model of resonances

e First order resonances (2/1, 3/2, etc.)
Integrable approximation is straightforward

Sessin & Ferraz-Mello (1984), Henrard et al. (1986),
Wisdom (1986), Batygin & Morbidelli (2013)

e Higher order resonances (3/1, 5/2, etc.)
2 degrees of freedom (not integrable)
— New simplifying assumption
e1/ey = (e1/ex)rorcea  (€CC. ratio at resonance center)

2.1 ——

= Integrable pendulum-like approx.

H=-(I-06)>*+2Rcos(qgf) < °| (
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Dissipative evolution in resonance
e Dissipation affects the resonant motion in 2 ways
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e Relative amplitude: A = =+

— if A\, Locked in resonance, P,/P, ~ p/q
- if A /" Escape from resonance, P,/P; no more locked
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Migration in protoplanetary disk

e A / (unstable res.) & % < (j—;)ﬂmd

,\_ ecc. damping timescales

(by disk-planet interactions)

—> Escape with P,/P; \, (convergent migration)

e Observed resonant systems
= constraints on disk properties
(ex: surface density profile)

Delisle, Correia, Laskar (2015), accepted to A&A
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Tidal dissipation
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e 7 <71, Amplitude / — separatrix crossing possible
— 17 <71, Diverging Py/P; > ky/k;y EXT
- 7> 1, Converging P>/P; < ky/k; INT

e 7> 7. Amplitude N\, — evolution close to libration center
— g = 1: Diverging P>/Py > ky/ky EXT
— g > 1: Staying in resonance P,/P, ~ ky/k; RES

Delisle, Laskar, Correia (2014)
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Who’s who? Constraints on planets nature

ex: GJ 163
Parameter [unity] b c d
msini [Mg] 10.661 7.263 22.072
P [days] | 8.633 25.645 600.895
a [AU] | 0.06069 0.12540 1.02689
e 0.0106 0.0094 0.3990

e Planets b, c close to 3:1 MMR (order 2)
Pz =297<3 Internal circulation (converging)

Ty <T<T,

Delisle, Laskar, Correia (2014)
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Who’s who? Constraints on planets nature
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GJ 163b: gaz Delisle, Laskar, Correia (2014)
GJ 163c: rock
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Conclusion

¢ Classification of outcome of dissipative process in resonance

e Constraints on systems properties from period ratio
— Disk properties (disk-planet interactions)

— Planets nature (tidal dissipation efficiency)

e Analytical model
— Better understanding of these complex process
— First approximation of constraints

— Need numerical simulations for precise constraints
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