Structure and evolution of planets and their host stars

Mutlu Yıldız

Ege Üniversitesi

direction of Assessment of George State of State

MNRAS 445, 4395-4405 (2014)

doi:10.1093/mnras/stu2053

On the structure and evolution of planets and their host stars – effects of various heating mechanisms on the size of giant gas planets

M. Yıldız,^{1★} Z. Çelik Orhan,¹ C. Kayhan¹ and G. E. Turkoglu²

¹Department of Astronomy and Space Sciences, Science Faculty, Ege University, 35100 Bornova, İzmir, Turkey

²University of Guelph, Department of Human Health and Nutritional Sciences and Department of Physics, Guelph, Ontario, N1G 2W1, Canada

Outlines

New methods for determination of metallicity (Z) and age (t) of the host stars.

- [Fe/H]? [O/H]?

Heating processes in inflated planets (gas giants).

Data from TEPCat (Southworth 2011)

- Irradiation
- Tidal interaction
- Molecular dissociation
- Evaporation
- Effects of metallicity and cooling

Conclusions

Metallicity from [Fe/H] or [O/H]? Oxygen is the most abundant heavy element.

Edvardsson et al. (1993).

Stellar Mass-radius relation – Energy transfer in outer regions

Notes

- 1) Two different slopes for M< Mt and M>Mt.
- 2) Mt depends on metallicity.
- 3) Slopes do not depend on Z.

Computation of Stellar Age: ANKi models

$$\frac{R(t)}{R_{\odot}} = \frac{R_{\rm ZAMS}}{R_{\odot}} + a(M, Z)t_{\rm rel}^{3/2}, \qquad t_{\rm rel} = \frac{t}{t_{\rm TAMS}}$$

$$t_{\rm rel} = \frac{t}{t_{
m TAMS}}$$

$$a(M, Z) = 0.114b \left(\left(\frac{M}{8.8 \,\mathrm{M}_{\odot}} \right)^5 + 1 \right) + (0.222 - b) \left(\frac{M}{\mathrm{M}_{\odot}} \right)$$

$$b(Z) = \frac{5.297}{3.139 + (Z/Z_{\odot})^{4.6}}.$$

Maximum age from Z_{Fe} is about 17-18 Giga years

Maximum age from Z₀ is 11 Giga years

Age of the Galaxy is 13.4 ±0.8 Giga years (Pasquini ve ark. 2004).

Mass-radius relation for Planets: TEPCat (Southworth 2011)

For Mp=0.4-4.5 Mj, radius is almost constant.

0.7 < R <2.1 Rj
Why planetary radii are so different?

Inflated Planets: Effect of incident flux

Mass dependent

Inflated Planets: Effect of irradiation energy per gram per second

$$L_{-}=\pi R_{\rm p}^2 F_{\rm I}.$$

$$l_- = L_-/M_{
m p}$$

Mass independent relation between R and I_?

$$l_{-}=rac{\pi F_{\mathrm{I}}}{M_{\mathrm{p}}/R_{\mathrm{p}}^{2}}\propto rac{F_{\mathrm{I}}}{g_{\mathrm{p}}}.$$

$$\Delta \log (R_l) = 0.138(\Delta \log (l_-/l_0) - 2.5).$$

Inflated Planets: Molecular dissociation?

For a sphere:

$$\frac{\Delta R}{R_{\rm i}} = \frac{1}{3} \frac{\Delta V}{V_{\rm i}}$$

If complete dissociation

$$n_{\rm f} \approx 2n_{\rm i}$$

$$V_{\rm f} \approx 2V_{\rm i}$$

$$R_{\rm f} = R_{\rm i} + \Delta R = 1.33 R_{\rm i}.$$

Inflated Planets: Tidal effect

Rate of energy converted from orbital energy to heat (Storch & Lai 2014)

Eccentricity (Knutson et al. 2014)

Effect of irradiation energy on R is subtracted.

$$R_{\rm p}'$$
 is $R_{\rm p} - \Delta R_l$

Inflated Planets: Cooling

Cooling of Jupiter from Nettelmann et al. (2012)

Inflated Planets: Evaporation

Mass-loss rates:

$$10^{11} - 10^{13} \text{ g s}^{-1}$$

$$10^{10} - 10^{12} \text{ g s}^{-1}$$

The mass loss for the most irradiated planets is about 5% in 1 Gyr.

Inflated Planets: Effect of Metallicity

$$R_l = R_p - \frac{\Delta R_p}{\Delta \log(l_-)} \delta \log(l_-).$$

$$R_{lE} = R_l - \frac{\Delta R_l}{\Delta \log(\dot{E})} \delta \log(\dot{E}).$$

$$R_{/\mathrm{Et}} = R_{/\mathrm{E}} + \frac{\Delta R_{/\mathrm{E}}}{\Delta t_9} \delta t_9.$$

Good agreement with the findings of Guillot et al.(2006) and Miller & Fortney (2011)

Conclusions

- * New methods are developed for age and metallicity (Z) of the host stars.
- * The mosf effective mechanism on planetary radius is irradiation energy (~ %30).

The relation between R and irradiation is mass independent, if we consider received energy per gram per second (I_).

- * Tidal effect ~%10-15
- * Cooling and metallicity incluence R.
- *Evaporation seems to cause significant mass loss.

Further analysis is required.

Supported by TÜBİTAK (Project no 112T989)