Stochastic background of gravitational waves: analytic description of its anisotropies

Giulia Cusin

29th June 2017

arXiv: 1704.06184 in collaboration with C. Pitrou, J.P. Uzan

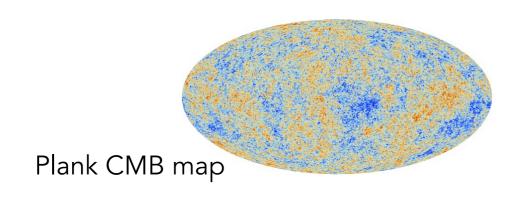
Stochastic backgrounds of radiation

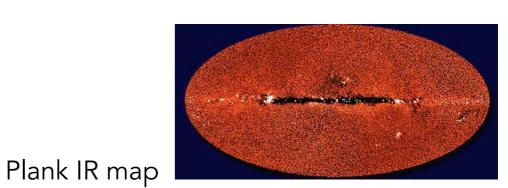
Stochastic backgrounds of radiation: incoherent superposition of radiation emitted by unresolved sources

cosmological origin

astrophysical origin

EM radiation

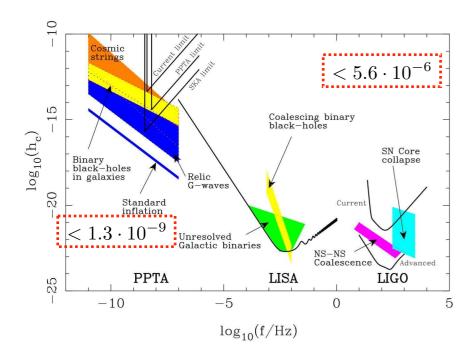

CMB


IR extragalactic background

GW radiation

cosmological background

astrophysical background



Astrophysical background: status of the art

Observations

bounds on Ω_{GW} integrated over directions

... Ω_{GW} sky map (persistent sources)

Theory

 Ω_{GW} computed in FLRW

we go beyond this assumption!

Our goal: compute the total flux of GW from astrophysical sources, received per units of frequency and solid angle around the direction of observation

CMB

 $\ell = 0$ $\ell = 1$ Penzias & Wilson '65 Sachs-Wolfe formula '67 Henry '71 Planck '13 **COBE '89 WMAP '03** Angular scale 2° 0.5° 0.2 ° SASK 6 000 $\begin{bmatrix} 1(1+1)C_1/2\pi \end{bmatrix}^{1/2} \mu K$ 00 09 Temperature
-A-CDM
(All data) 2003 (5 000 (5) 5 000 # 4 000 FWMAP CBI OVRO I ATCA large range frequencies + T₀² l(l+1) C_l (l+1) C_l polarization 20 COBE 1000 10 100 1 1 000

 ν

 $\ell = 1$ $\ell = 0$ Penzias & Wilson '65 **PTTA** Sachs-Wolfe formula '67 Henry '71 Planck '13 LISA **COBE** '89 ET **WMAP '03** future Angular scale 2° 0.5° 0.2 ° LIGO SASK 6 000 $\begin{bmatrix} 1(1+1)C_1/2\pi \end{bmatrix}^{1/2} \mu K$ 00 09 Temperature 2003 -A-CI)M (All data) E 4 000 CBI ACBAR OVRO I ATCA large range frequencies + polarization 3 000 20 COBE 1000 10 100 1 1 000

What we can learn

We calculate the **angular power spectrum** of the GW stochastic background and its **correlations** with lensing and galaxy distribution

Two types of information:

(1) cosmology: cosmic structure at large scales, spacetime geometry...

(2) local physics: GW production, star formation rate, distribution sources...

What we can learn

We calculate the **angular power spectrum** of the GW stochastic background and its **correlations** with lensing and galaxy distribution

Two types of information:

(1) cosmology: cosmic structure at large scales, spacetime geometry...

(2) local physics: GW production, star formation rate, distribution sources...

we learn mostly about the distribution of GW sources

What we can learn

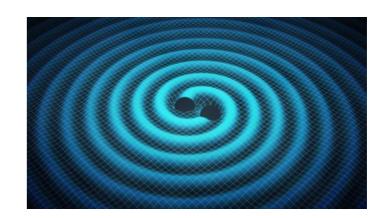
We calculate the **angular power spectrum** of the GW stochastic background and its **correlations** with lensing and galaxy distribution

Two types of information:

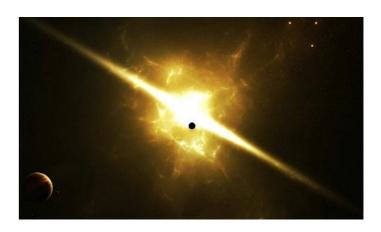
(1) cosmology: cosmic structure at large scales, spacetime geometry...

(2) local physics: GW production, star formation rate, distribution sources...

new cosmological observable robust to local physics unknown


Unresolved sources of GW

We distinguish the following **sources of GW** (inside a galaxy), depending on the characteristic time of GW emission with respect to the life time system

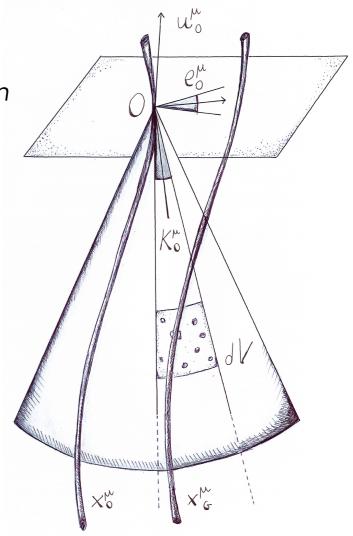

(1) binary inspiralling objects

(2) binary merging objects

(3) exploding supernovae

Scheme of our approach

We consider the flux of GW from a galaxy seen in direction e_O^μ at redshift z_G .


4-velocity observer u_O^μ

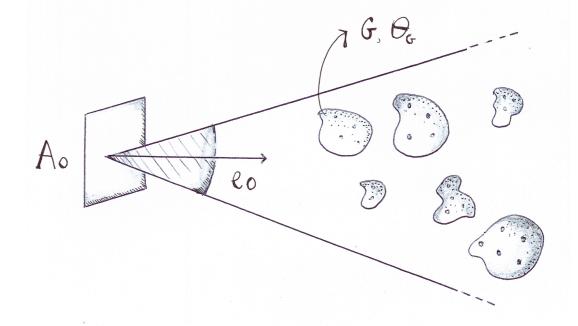
3+1 decomposition

direction observation e_O^μ

wave vector graviton
$$\frac{dx^{\mu}}{d\lambda} \equiv k^{\mu} = E(u^{\mu} - e^{\mu})$$

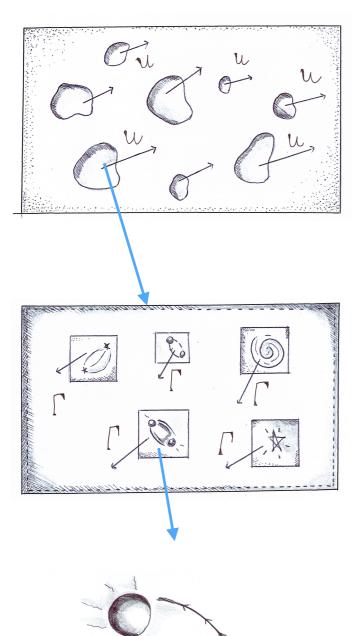
 e_O^μ in solid angle $\,d\Omega_O\,$ defines a null bundle along the past light cone

dV is 3D physical volume element given by the intersection of 4-volume with the observer past light cone

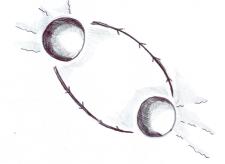

Some observational issues

Galaxy G, at z_G and observed in e_O . Associated flux:

$$\Phi(e_O, z_G, \theta_G) \equiv \frac{\text{Energy}}{A_O \Delta t_O}$$

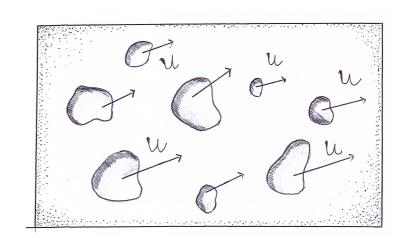

 θ_G parameters describing G (mass, metallicity...)

$$\int d\nu_O \Phi(e_O,\nu_O,z_G,\theta_G) \equiv \Phi(e_O,z_G,\theta_G)$$
 specific flux


To find the total flux received, we need to sum the contributions from all the galaxies in the solid angle $d\Omega_O$

Three scales in our problem

(1) **cosmological scale**. Galaxies: point-like sources moving with the cosmic flow


(2) **galactic scale**. A source -i inside a galaxy is characterized by parameters $\theta^{(i)}$ and is moving with velocity Γ . Effective luminosity of a galaxy defined taking into account the various contributions of the sources

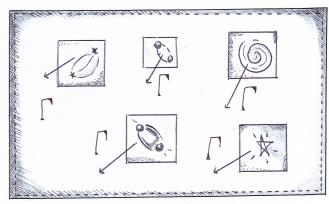
(3) **local scale**. Scale of single sources emitting GW inside a galaxy

(1) Cosmological scale

$$\int_0^\infty \mathcal{L}_G(\nu_G,\theta_G) d\nu_G = L_G(\theta_G) \qquad \text{effective luminosity}$$

$$\nu_G = (1+z_G)\nu_O \qquad \qquad \text{effective frequency}$$

The observed flux from a galaxy, is related to its effective luminosity through


$$\Phi(z_G, e_O, \theta_G) \equiv \frac{1}{4\pi D_L^2(z_G, e_O)} L_G(\theta_G)$$

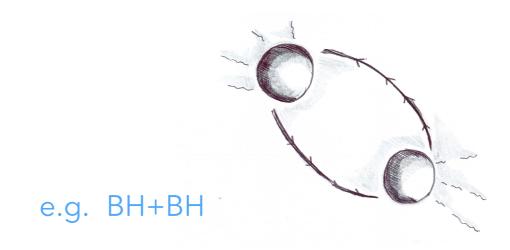
$$\Phi_{\nu}(z_G, e_O, \nu_O, \theta_G) d\nu_O \equiv \frac{(1+z_G)}{4\pi D_L^2(z_G, e_O)} \mathcal{L}_G(\nu_G, \theta_G) d\nu_O \qquad d\nu_G = (1+z_G) d\nu_O$$

(2) Galactic scale

 $\mathbf{\Gamma} = \mathbf{\Gamma}(\theta^{(i)}, \theta_G)$ with distribution function $f(\mathbf{\Gamma}, \theta_G)$

with
$$\int d^3\Gamma f(\mathbf{\Gamma}, \theta_G) = 1$$

galaxy rest frame

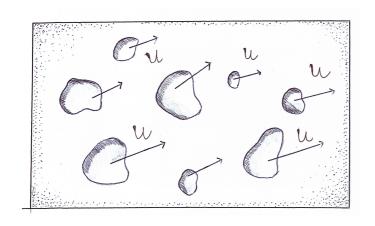

Effective luminosity (per unit of effective frequency)

$$\mathcal{L}_G(\theta_G, \nu_G) = \mathcal{L}_G^I(\theta_G, \nu_G) + \mathcal{L}_G^M(\theta_G, \nu_G) + \mathcal{L}_G^{SN}(\theta_G, \nu_G)$$

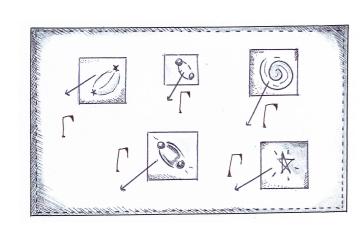
$$\mathcal{L}_{G}^{I}(\theta_{G}, \nu_{G}) = \sum_{(i)}^{I} \int d\theta^{(i)} \mathcal{N}^{(i)}(\theta^{(i)}, \theta_{G}) \int d^{3} \mathbf{\Gamma} f(\mathbf{\Gamma}, \theta_{G}) \frac{dE_{G}^{(i)}}{dt_{G} d\nu_{G}} (\nu_{G}, \mathbf{\Gamma}, \theta_{G})$$

$$\mathcal{L}_{G}^{M,SN}(\theta_{G},\nu_{G}) = \sum_{(i)}^{M,SN} \int d\theta^{(i)} \frac{d\mathcal{N}^{(i)}}{dt_{G}} (\theta^{(i)},\theta_{G}) \int d^{3}\mathbf{\Gamma} f(\mathbf{\Gamma},\theta_{G}) \frac{dE_{G}^{(i)}}{d\nu_{G}} (\nu_{G},\mathbf{\Gamma},\theta_{G})$$

(3) Local scale

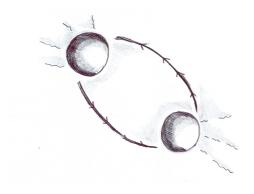


Spectra and powers in the galaxy rest frame are obtained Lorentz transforming the results in the literature (which are computed in the source local frame)


e.g.
$$\frac{dE}{dt \, d\nu}\Big|_G = boost\left(\frac{dE}{dt \, d\nu}\Big|_{loc}, \mathbf{\Gamma}\right)$$

persistent background

Summary: from cosmological to local scale



cosmological scale

$$\Phi = \frac{(1+z_G)}{D_L^2} \mathcal{L}_G$$

function local quantities at sources

local scale

Final parametrization of ρ_{GW}

$$\frac{d^2\rho_{GW}}{d\nu_Od\Omega_O}(\nu_O,e_O) = \int dz_G \int d\theta_G \, \Phi(z_G,\nu_O,\theta_G) \, \frac{d^2\mathcal{N}_G}{dz_G \, d\Omega_O}(z_G,\theta_G)$$
 integration over parameters galaxy

integration over redshift change variable integration $z_G \to \lambda$

number of galaxies per solid angle per redshift bin

$$d\mathcal{N}_G(x^{\mu}(\lambda), \theta_G) \equiv n_G(x^{\mu}(\lambda), \theta_G) dV(x^{\mu}(\lambda))$$

$$dV(x^{\mu}(\lambda)) = d\Omega_O D_A^2(\lambda) \sqrt{p_{\mu}(\lambda)p^{\mu}(\lambda)} d\lambda$$

physical surface

spatial displacement

...covariant: valid in a generic cosmology!

FLRW with perturbations

We specialize to homogeneous & isotropic universe + scalar perturbations

$$ds^{2} = a^{2} \left[-(1+2\Psi)d\eta^{2} + (1-2\Phi)\delta_{ij}dx^{i}dx^{j} \right] \qquad (u^{\mu}) \equiv \frac{1}{a}(1-\Psi, v^{i})$$

We need to consider perturbations of the following quantities:

redshift perturbation $z_G \equiv \bar{z} + \delta z$ $density \ perturbation \qquad n_G(x^\mu) = \bar{n}_G(\bar{x}^\mu) + \delta x^\mu \nabla_\mu \bar{n}_G(\bar{x}^\mu) + \delta n_G(\bar{x}^\mu)$ perturbation spatial displacement $p^\mu = \bar{p}^\mu + \delta p^\mu$

Results in cosmological context

$$\frac{d^2\rho_{GW}}{d\nu_Od\Omega_O}(\eta_O,\mathbf{x}_O,\mathbf{e},\nu_O) = \frac{d^2\rho_{\overline{GW}}}{d\nu_Od\Omega_O}(\eta_O,\mathbf{x}_O,\nu_O) + \mathcal{E}(\eta_O,\mathbf{x}_O,\mathbf{e},\nu_O)$$

$$\frac{1}{4\pi H_0}\int d\bar{z} \frac{1}{E(\bar{z})} \frac{1}{(1+\bar{z})^4} \int d\theta_G \, \bar{n}_G(\bar{z},\theta_G) \mathcal{L}_G(\nu_G,\theta_G)$$
background

first order perturbation. Angular dependence!

Results in cosmological context

$$\frac{d^2 \rho_{GW}}{d\nu_O d\Omega_O}(\eta_O, \mathbf{x}_O, \mathbf{e}, \nu_O) = \frac{d^2 \rho_{\overline{GW}}}{d\nu_O d\Omega_O}(\eta_O, \mathbf{x}_O, \nu_O) + \mathcal{E}(\eta_O, \mathbf{x}_O, \mathbf{e}, \nu_O)$$

[cosmological contribution]

 \sim CMB temperature in perturbed universe (SW, integrated SW and Doppler terms...)

In progress...

we already have it

we are working it out in detail, for different source types

numerical prediction for the angular power spectrum of Ω_{GW} to test vs observations!

Impact of our work, how to continue it

We have proposed an analytic framework to **study the anisotropies** of the astrophysical background of GW

Accurate modeling needed to **disentangle** GW astrophysical background from primordial background and instrumental noise

New generation of GW experiments: astrophysical background of GW has a chance to be detected in the next few years

LIGO coll. PRL 116.131102

Method developed to **extract angular information** from signal: radiometer method & spherical harmonic decomposition (see Cornish & Romano review)

 ν

 $\ell = 0$ $\ell = 1$ Penzias & Wilson '65 **PTTA** Sachs -Wolfe formula '67 Henry '71 Planck '13 LISA **COBE** '89 ET **WMAP '03** future Angular scale 2° 0.5° 6 000 90 ° 0.2 ° LIGO SASK $\begin{bmatrix} 1(1+1)C_1/2\pi \end{bmatrix}^{1/2} \mu K$ 00 09 Temperature 2003 -A-CI)M (All data) E 4 000 CBI ACBAR OVRO I ATCA large range frequencies + polarization 20 COBE 1000 10 100 1 1 000

Thank you

Extracting angular information

Two ways of implementing the maximum likelihood approach for mapping GW power (see Cornish & Romano)

Radiometer method & spherical harmonic decomposition method

optimized for a background dominated by point-like sources

diffuse background

LIGO angular searches: 2 directional searches for persistent GW background, using the two methods above

SRN ratio maps obtained from the two methods consistent with detector noise

LISA angular resolution

LISA: all-sky monitor (not pointed instrument)

it measures simultaneously both polarizations of GW: 2 time series of data

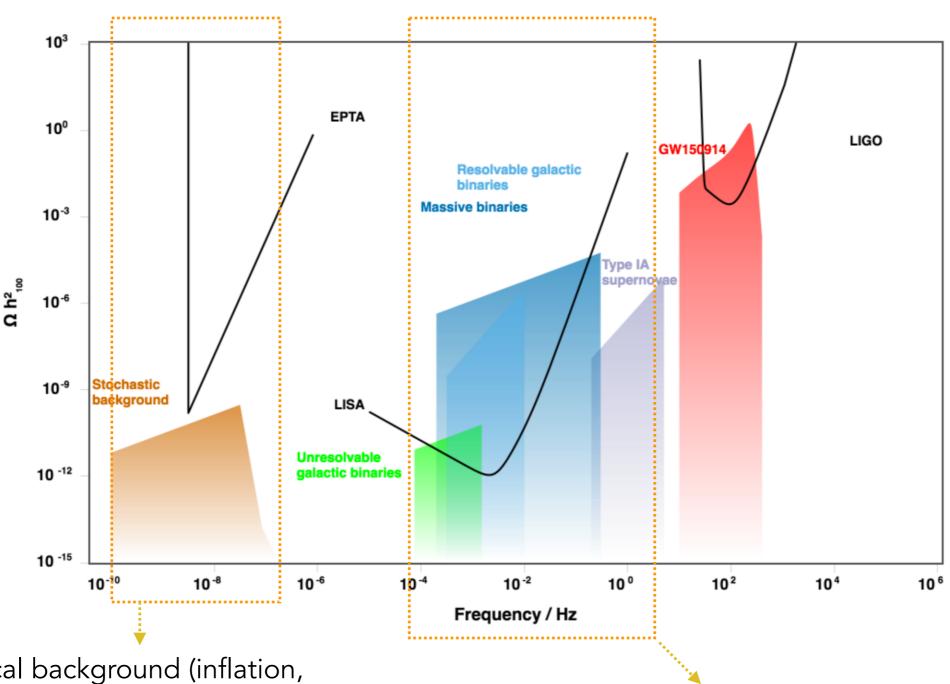
Info on the source position is encoded in the signal in three ways:

- (1) relative amplitude and phase of the two polarization components
- (2) periodic Doppler shift
- (3) modulation of the signal due to detector time-varying orientation

angular resolution $\Delta\Omega_S$ for a given source

(Cutler '97)

In any case, if we just had 3 LISA...

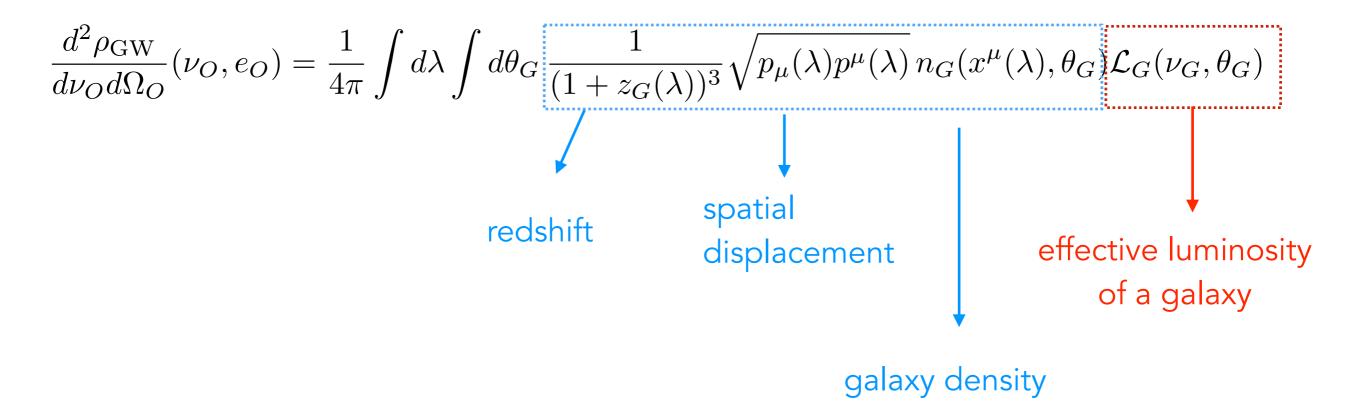

Future detection background

LIGO (PRL 116.131102)

Analysis characteristic event GW150914 \longrightarrow prediction for flux GW from BH+BH events

Amplitude detectable by advanced VIRGO & LIGO (even before reaching the final designed sensitivity)

Sensitivity curves and expected fluxes



cosmological background (inflation, cosmic strings...)

expected regime of frequencies and strain for astrophysical stochastic background

Final parametrization of ρ_{GW}

After these substitutions, we get

...covariant: valid in a generic cosmology!