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Aim of the talk:
   - review of the current status of models/simulations aiming to predict
      the gravitational wave signal of core collapse supernovae (CCSN)

Outline of the talk:

    - why to occupy oneself with gravitational waves from CCSN?

    - processes that generate gravitational waves in CCSN

    - generic features of the gravitational wave signal from CCSN

    - achievements and predictions of the most recent models 

   

Disclaimer:

    - only selected references are given, no attempt for completness

    - more references, see:  

        http://wwwmpa.mpa-garching.mpg.de/rel_hydro/GWlit_catalog.shtml

  
Collaborators:  Haakon Andresen, Thomas Janka, Bernhard Müller 
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''Looking'' into the ''engine'' of a core collapse supernova        
                                           

 -  through observations of neutrinos 
        up to now only SN1987A

-  through observations of gravitational waves 
      not yet occured!  Would provide kind of Rosetta stone!

-  through simulations 
       already a 50 year effort ;  extremely complex & 
       expensive 6D radiation-hydrodynamics problem
       requiring  ~50 million CPU-hrs / simulation



                                                                                                     

             

               

                                                                        

          

                             

   Core collapse supernovae:  neutrino-driven delayed explosion
                                                           (Colgate & White '66, Wilson ´82,
                                                                                      Bethe & Wilson '85)    

neutrinos diffuse out of
opaque proto-neutron star
   

neutrinos heat matter in semi-
transparent post-shock region
--->  

convection with coexisting
downflows and rising hot
bubbles sets in

neutrinos stream freely through
stellar envelope 



  

● 3D hydro + ''ray-by-ray-plus'' variable Eddington
factor method: current method used at MPA        
(Janka et al.)

● 3D hydro + two moment closure of Boltzmann
equation (next feasible step)

● 3D hydro + 6D direct discretization of Boltzmann
equation:  no serious attempt yet        
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– 6D time-dependent radiation-hydrodynamics problem 
–
–   Boltzmann equation determines neutrino 
–     distribution function in phase space 
–
–   Integration over momentum space yields 
–     source terms for hydrodynamics 

Various modelling approaches Required resources

● 0.1 - 1 PFLOP/s

●

● 1 - 10 PFLOP/s

●

● ~100 PFLOP/s                   
    (sustained!)

Explosion mechanism

    the computational challenge



                                                                                           
Einstein quadrupole formula 

          

          mass-quadrupole
       tensor  

         

          numerically more suitable form
        (Nakamura & Oohara 1989, Blanchet+ 1990)  
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(adequate for CCSN (Shibata+ '05, Reiswig+ '11))



                                                                                        
Gravitational waves                                                                          
  

      Einstein quadrupole formula                                                                      

           

         

 

                                    * [ measuring the distance earth-sun with an accuracy of 1 nm ]

Rs = 3 km,  v/c = 0.1,  R = 10 kpc   –->   h = 10-20 *

 generically produced by any CCSN

hi j
TT= 2G

c4 R
∂2

∂ t 2 Qk l ∼
RS

R
v2

c2

        time-dependent mass-energy quadrupole moment
     in core collapse supernovae due to   

              -  convection in proto-neutron star
             -  convection in neutrino heated hot bubble
             -  anisotropic neutrino emission                                                                      
             -  any other non-radial instability (e.g. SASI, AAC)       

and due to  rotation and magnetic fields



  
  state-of-the-art 3D simulation of a 20 solar mass model

a moderate (g=1.26 - 0.2) 
strangeness-dependent
reduction of the axial-
vector coupling constant
turns an unsuccesful
model into a succesful
one
                          
(Melson+ '15, ApJL 808)



                                                                                                       
    Murphy, Ott & Burrows, 2009
GW emission from postbounce phases

distinct phases of GW emission (non-rotating cores!):
  - prompt convection (negative entropy gradient left by stalling shock; generic?)
  - PNS & postshock convection 
  - SASI (spikes from narrow downflows striking the PNS ''surface'')
  - explosion

-  progenitors of 12, 15,
   20 and 40 solar mass
 
-  2D hydro (N)             

-  EOS: Shen+ '98

-  approximate
  ν heating/cooling

-  parametrized 
    explosions



                                                                                                       
    Murphy, Ott & Burrows, 2009
GW emission from postbounce phases

GW signal from explosion phase contains information 
of the effects of global asymmetries in explosion 



   

   polytropes,                      microphysical EOS,                  microphysical EOS,
   simplified EOS                 approx. ν-transport                  detailed ν-transport

Towards realistic theoretical GW signals from CSSN

  Newtonian
  hydro &
  gravity 

 Newtonian
 hydro &
 approx. 
 GR gravity

  full GR

  GR hydro
  & CFC 
  gravity

2D

3D

1D

further ''dimensions'':  rotation, magnetic fields, initial models
  

          Müller+  '08
   set of exploding models

      Andresen+  '16
      Yakunin+ '15
       ~GR, 3D models

       Müller & Janka '97
  PNS & prompt convection

   Dimmelmeier+ '07
   Ye() from 1D GR

        Ott+ '07
   Ye() from 1D GR

 Kuroda et al. '14
    3D GR 

  Zwerger & Müller  '97
     parameter study

  Shibata & Sekiguchi  '05
           2D/3D GR 

  Ott+ ' 11
  3D GR

   Dimmelmeier+  '03
 2D CFC param. study



                                                                                                          

    Some achievements/discoveries from ~40 yrs of studies
 of the GW signature of CCSN 

   

   -  spheroidal / ellipsoidal, one-zone models                                                         
      Saenz & Shapiro '78, '79, '81                                                E/Mc2 ~ 10-6 ... 10-4     

    

   -  2D Newtonian hydro, prompt explosion models,
   evolutionary progenitor models, microscopic EOS                                           
      Müller '82; Mönchmeyer+l '89, '91                                           E/Mc2 ~ 10-10 ... 10-7    

    

    -  2D Newtonian rotating polytropes, parameter study                                         
      Finn & Evans '90; Yamada & Sato '95; Zwerger & Müller '97;

         Rampp, Müller & Ruffert  '98 (3D)                                       centrifugal bounce can occur



                                                                                                          

   

    

       -  GR parameter study, 2D simplified EOS, no -transport                               
        Dimmelmeier, Font & Müller '02 (CFC); Shibata '03; Shibata & Sekiguchi '05 (3D)                        
                                                                                                                             
        

     

      

   Some achievements/discoveries  

   GR potential deeper -->  larger bounce densities, more compact PNS  
          --> centrifugal bounce occurs only rarely 



                                                                                                          

   

    

        -  MHD models  Kotake+ '04 (N); Yamada & Sawai '04 (N); Obergaulinger+ '06 (N & GR-pot);
                                         Scheidegger+ '08, '10 (3D, EOS, GR-pot),           

              only strong initial fields (B > 1011 G) influence overall dynamics 

              –-->  GW amplitude affected by

                     * magnetic fields that contribute significantly to total energy density

                       * bipolor MHD driven jet outflow giving rise to a new signal type

                       * initially strong toroidal field: jet suppressed by fast growing spiral SASI 

   Some achievements/discoveries 



                                                                                                          

   

    

       -  GW from neutrinos (time-dependent asymmetric energy/mass flux)                          
         Müller & Janka '97, Müller+ '04 (2D, GR-pot)                                                                 
                                                                                             

     

      

   Some achievements/discoveries 

  * frequencies lower (≾ 30 Hz) than those of matter signal (100 Hz … 1000 Hz)
      →harder to observe because of seismic detector noise
   
  * amplitudes overall larger    

       rotating 15 solar mass 2D model                 non-rotating 11 solar mass 2D model   



    

GW amplitudes due to aspherical flow                            total GW amplitudes (including ) 
  &  corresponding spectograms dE

M 
/d 

Parametrized 3D models of neutrino-driven core collapse supernovae
    Müller, Janka, Wongwathanarat  (2012)

  h = 310  - 2 2 for R=10kpc



                                                                                                                     
GW signature of parametrized 3D models 

                                                                                     

                                                                                              

                                                                                                

Müller, Janka & Wongwathanarat (2012)

 N20-2

observer angle dependent wave amplitudes   



                                                                                                       
    

B.Müller, Janka & Marek 2013:  2D, CFC, multi-group three-flavor ray-by-ray-plus ν-transport

solid lines: matter GW signal ;   dashed lines: neutrino GW signal  (different scales!) 

prompt convection

ν-convection, SASI

PNS convection &
aspherical shock expansion

   relativistic effects in combination with detailed ν-transport essential for quantitative predictions,
   determine structure of PNS surface layer and its characteristic g-mode frequency

   Some achievements/discoveries
  



                                                                                                       
    

   Some achievements/discoveries 

Cerda-Duran+ 2013:  2D, XCFC, 35 solar mass, rapidly rotating (2rad/s), low-metallicity progenitor,
                                  gray ν-leakage scheme, LS220-EOS,
                                  two models simulated until BH formation (M

PNS
 > 2.04 M

sun
)

SASI

      previous studies of
collapsar scenario
Sekiguchi & Shibata
2005, Ott+ 2011
used simplified EOS
→
unrealistically short
time (~150 msec)
until BH formation
→
 miss important part
 of GW emission
 (information about
  structure of PNS &
  accretion shock)   

      lines show frequency evolution of  g-modes at PNS surface (green),  g-modes  in cold inner core (solid red),
                                                      quasi-radial mode (dashed red), and f-mode (dotted blue)     



                                                                                                       
    

   Some achievements/discoveries 

Kuroda, Takiwaki & Kotake 2014:  

     3D, GR, 15 solar mass progenitor, 5 rotating models (Ω[rad/sec) = π/6, π/3, and π), Shen EOS,
approximate ν-transport (M1 closure, variable Eddington factor of Levermore 1984)  

  - results consistent with previous work in 3D (Ott+ '07, '12, '13; simpler transport, softer EOS)

  - signals from prompt convection qualitatively similar (except for most rapidly rotating model)

  - nonaxisymmetric instabilities (spiral SASI) essential for GW signature of rotating models       
 (see also 3D Newtonian study with ZEUS-MP of Kotake+ '11)

   Hayama+ 2016:  circular polarization of GW from CCSN provide a clear indication of rapid rotation
rotation period < few seconds → galactic events detectable with network of 2nd generation detectors



                                                                                                       
    

   Some achievements/discoveries 

Andresen, B.Müller, E.Müller & Janka 2016:  

     3D, GR-pot,  11.2, 20, and 27 solar mass progenitors, LS-220 EOS, ray-by-ray-plus (Buras+ '06)
energy-dependent two-moment multi-flavor ν-transport (VERTEX, Rampp & Janka '02)   

      See also: Kuroda, Kotake & Takiwaki '16, 15 solar mass model, different nuclear EOS,
                                                                   grey ν-transport

  -  GW emission (in pre-explosion phase) strongly depends on whether post-shock flow is
 dominated by SASI or convection (driven by neutrino heating)                                                
                                                                                                 

  -  SASI-dominated models: 

       strong emission at low frequencies  around 100 … 200 Hz; not present in 2D models! 

        but low-frequency emission is no unambiguous signature of SASI,
        can also also occur after onset of explosion

  -  GW emission of 3D models differs considerably from that of 2D models
  amplitudes:  |A

+,x
 | ≾ 4 cm in 3D models, and  ~ few 10 cm in 2D models

  -  shock revival in exploding 20 M⊙ model results in enhanced low-frequency emission
     (preferred scale of convective eddies in PNS convection zone changes)



                                                                                                       
    

   Some achievements/discoveries 

Andresen, B.Müller, E.Müller & Janka 2016  

post-shock region dominated by

                                                          
SASI & convection

     

                                                                 
                   

      SASI & convection

     

                                                                 
                                                    
convection  

     

         

                                                            
SASI & convection  

        exploding!      

low-frequency SASI emission

GW from prompt convection

      explosion signature   
increase of
broadband power

|~A x
2|+|~A+

2|



                                                                                                       
    

   Some achievements/discoveries 

Andresen, B.Müller, E.Müller & Janka 2016: 

      to determine origin of high-frequency and low-frequency components of GW signal
 the computational volume is divided into three layers

        layer A: PNS convection zone

        layer B: PNS convectively stable surface layer

        layer C: region beyond the PNS''surface''

      high-frequency emission:  mostly from aspherical motion in layer A 

        low-frequency emission:   from all 3 layers (even for model s20s!)



                                                                                                       
    

   Some achievements/discoveries 

Andresen, B.Müller, E.Müller & Janka 2016:  

  -  SASI produces strong signal component in the frequency range 100 … 200 Hz

  amplitude spectrograms of low-frequency GW signal arising from the three different layers

                   episodes of strong SASI activity are bracketed by vertical dashed lines

     apparent temporal correlation of low-frequency emission with the SASI, because of a
global modulation (3D≠2D!) of the accretion flow by the SASI

     GW signal traces frequency of l=1,2 SASI modes, but with a frequency doubling for the l=1 spiral mode
(integral in d2Q/dt2  invariant to a rotation by π in any direction)   →  double-peak structure of low-frequency GW signal 

|~A x
2|+|~A+

2|



  

Predicting the gravitational wave signal of CCSN: 3 decades of fun & ordeal

Müller 1982 

    OUTLOOK:  

     The detection of the gravitational wave signal from a CCSN will provide
  new & independent insights into the explosion dynamics

      However, detection prospects appear rather bleak:
   D≾3kpc (2nd-generation),  D≾30kpc (3rd-generation) & closer events with high S/N

Müller+ 2012,  Andresen+ 2016
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