Lensing in cosmology

First case: lensing of a quasar by a galaxy
The Einstein cross: QSO 2337+0305

Distances in cosmology
Images and caustics in the isothermal potential

The mass-sheet degeneracy
Time delays
Microlensing variability

This time the complexity will increase
We will see multiple caustics merging

The lens equation in cosmology

$$
D_{I} \theta=d \quad \rightarrow \quad D_{I}=\frac{d}{\theta} \quad \text { angular distances }
$$

In the weak field limit and for small deviations The lens equation is still valid if we use the cosmological angular distances

Distances in cosmology

Comoving distance:

$$
D_{C}=\frac{c}{H_{0}} \int \frac{d z}{E(z)} \quad H(z)=H_{0} E(z)
$$

Comoving angular distance: $D_{M}=\left\{\begin{array}{lll}K^{\frac{-1}{2}} \sin \left(K^{\frac{1}{2}} D_{C}\right) & \text { for } K>0 & \text { Curvature: } K \\ D_{C} & \text { for } K=0 & \text { curvature density parameter } \\ -K^{\frac{-1}{2}} \sinh \left(-K^{\frac{1}{2}} D_{C}\right) & \text { for } K<0 & \Omega_{K}=-\left(\frac{c}{H_{0}}\right)^{2} K\end{array}\right.$

Angular distance: $D_{A}=\frac{D_{M}}{1+z}$
Do not subtract angular distances: use comoving angular distance then normalize using redshift

An interesting cosmological situation The Einstein cross: QSO 2337+0305

A distant quasar source: $z=1.695$ (light travel time: 9.846 Gyr)

A nearby galactic lens: $z=0.0395$ (light travel time: 0.540 Gyr)
(discovered by John Huchra in 1985)

The elliptical lens

The Einstein cross

QSO 2237+0305 (HST)

A simple model: elliptical isothermal potential

$$
\phi=\sqrt{(1-\eta) x^{2}+(1+\eta) y^{2}} \quad \text { for small ellipticity } \quad \phi \approx r\left(1-\frac{\eta}{2} \cos 2 \theta\right)
$$

The lens equation:
With:

$$
d r=r-1
$$

$$
\begin{aligned}
\vec{r}_{S} & =\vec{r}-\vec{\nabla} \phi \\
\quad \vec{r}_{s} & =\left(d r+\frac{\eta}{2} \cos 2 \theta\right) \quad \vec{u}_{r}-\eta \sin 2 \theta \quad \vec{u}_{\theta}
\end{aligned}
$$

A simple model: elliptical isothermal potential

Radial position of the images

$d r=-\frac{\eta}{2} \cos 2 \theta-x_{0} \cos \theta-y_{0} \sin \theta$

Einstein ring

$$
d r=\frac{\eta}{2} \cos 2 \theta-x_{0} \cos \theta-y_{0} \sin \theta \pm \sqrt{R_{0}^{2}-\left(\eta \sin 2 \theta-x_{0} \sin \theta+y_{0} \cos \theta\right)^{2}}
$$

Image forms if: $\quad\left|d f_{0}\right|=\left|\eta \sin 2 \theta-x_{0} \sin \theta+y_{0} \cos \theta\right|<R_{0}$

Here represented for: $\quad x_{0}=0 \quad ; \quad y_{0}=0 \quad ; \quad d f_{0}=|\eta \sin 2 \theta|$

Source at center of elliptical lens,

$$
d r=\frac{\eta}{2} \cos 2 \theta \pm \sqrt{R_{0}^{2}-(\eta \sin 2 \theta)^{2}}
$$

- Images when: $\sin 2 \theta<R_{0}$

Source near center Of elliptical lens

Caustics for the isothermal potential

$$
\begin{gathered}
\phi=\sqrt{(1-\eta) x^{2}+(1+\eta) y^{2}} \approx r\left(1-\frac{\eta}{2} \cos 2 \theta\right) \quad x_{S}=x-\frac{\partial \phi}{\partial x} \quad y_{S}=y-\frac{\partial \phi}{\partial y} \\
J=\frac{\partial x_{s}}{\partial x} \frac{\partial y_{s}}{\partial y}-\frac{\partial x_{s}}{\partial y} \frac{\partial y_{s}}{\partial x} \simeq \frac{r-1}{r}-\frac{3 \cos 2 \theta}{2 r} \eta \quad \text { To first order in } \eta
\end{gathered}
$$

Critical lines: $J=0 \quad \rightarrow \quad r=1+\frac{3}{2} \eta \cos 2 \theta$

We transform the equation for the critical lines to the source plane by using the lens equation

Caustics:

$$
\begin{aligned}
& x s=\left(\frac{3}{2} \cos \theta+\frac{1}{2} \cos 3 \theta\right) \eta \\
& y s=\left(-\frac{3}{2} \sin \theta+\frac{1}{2} \sin 3 \theta\right) \eta
\end{aligned}
$$

The amplitude of the caustics diagram is: 2η

Image equation $\quad d r=\frac{\eta}{2} \cos 2 \theta-x_{0} \cos \theta \pm \sqrt{R_{0}^{2}-d f_{0}^{2}}$

$$
d f_{0}=\eta \sin 2 \theta-x_{0} \sin \theta+y_{0} \cos \theta
$$

$$
\text { For } x_{0}=2 \eta, y_{0}=0
$$

$\left(d f_{0}\right)_{, \theta}=0 \quad ; \quad\left(d f_{0}\right)_{, \theta, \theta}=0$
Cusp caustic=order 3

Image formation $\rightarrow\left|d f_{0}\right|<R_{0} ; R_{0}$ source radius

Counter image

Beyond cusp

Image equation $\quad d r=\frac{\eta}{2} \cos 2 \theta-x_{0} \cos \theta-y_{0} \sin (\theta) \pm \sqrt{R_{0}^{2}-d f_{0}^{2}}$

」 $d f_{0}=\eta \sin 2 \theta-x_{0} \sin \theta+y_{0} \cos \theta$

For $\quad x_{0} \simeq 0.7 \eta, \quad y_{0} \simeq 0.7 \eta$
$\left(d f_{0}\right)_{, \theta}=0$
Fold caustic=order 2

$$
\text { Image formation } \rightarrow\left|d f_{0}\right|<R_{0} ; R_{0} \text { source radius }
$$

$$
d f_{0}
$$

The mass sheet degeneracy

Let introduce a new surface density $\widetilde{\kappa}$

It relates to the initial surface density κ by:

$$
\begin{gathered}
\kappa=(1-\lambda) \widetilde{\kappa}+\lambda \\
\text { With: } \kappa=\frac{1}{2} \Delta \phi \text { and: } \widetilde{\kappa}=\frac{1}{2} \Delta \widetilde{\phi} \longrightarrow \phi=(1-\lambda) \widetilde{\phi}+\frac{1}{2} \lambda\left(x^{2}+y^{2}\right)
\end{gathered}
$$

$$
\kappa=(1-\lambda) \widetilde{\kappa}+\lambda \longrightarrow \phi=(1-\lambda) \widetilde{\phi}+\frac{1}{2} \lambda\left(x^{2}+y^{2}\right)
$$

The lens equation:

$$
x_{S}=x-\frac{\partial \phi}{\partial x}=(1-\lambda)\left(x-\frac{\partial \widetilde{\phi}}{\partial x}\right)=(1-\lambda) \widetilde{x_{S}}
$$

$$
y_{S}=y-\frac{\partial \phi}{\partial y}=(1-\lambda)\left(y-\frac{\partial \widetilde{\phi}}{\partial y}\right)=(1-\lambda) \widetilde{y}_{S}
$$

The lens equation with the new surface density $\widetilde{\kappa}$ Is equivalent to the former lens equation If we re-scale the source coordinates the two equations are equivalent

This is known as the mass-sheet degeneracy (adding a constant density) Leads to a re-scaling of both lens and source coordinates

Time delays

observer

images

Basic idea: The path of light for each image is different Consequence: a time delay between the images

Refsdal (1964)

In practice the source: quasar Is variable

Thus time delays can be observed

The time delay

(for spatially flat universe or small curvature)

$$
\begin{array}{r}
\tau=\frac{\left(1+z_{L}\right)}{c} \frac{D_{L} D_{S}}{D_{L S}}\left(\frac{1}{2}(\vec{\theta}-\vec{\beta})^{2}-\psi(\vec{\theta})\right) \quad d_{I}=\left(\frac{c}{H_{0}}\right)^{-1} D_{I} \longrightarrow D_{I} \propto D_{C}=\frac{c}{H_{0}} \int \frac{d z}{E(z)} \\
\tau=\frac{\left(1+z_{L}\right)}{H_{0}} \frac{d_{L} d_{S}}{d_{L S}}\left(\frac{1}{2}(\vec{\theta}-\vec{\beta})^{2}-\psi(\vec{\theta})\right) \quad d_{I}: \text { dimensionless distances }
\end{array}
$$

The first thing to note is that the time delay is proportional to: $H_{0}{ }^{-1}$

Thus measuring the time delay is direct measurement of H_{0}

In practice what we measure is the differential time delay between the images

$$
\tau=\frac{\left(1+z_{L}\right)}{H_{0}} \frac{d_{L} d_{S}}{d_{L S}}\left(\frac{1}{2}(\vec{\theta}-\vec{\beta})^{2}-\psi(\vec{\theta})\right) \longrightarrow \tau(\theta, \beta)=T_{d}\left(\frac{1}{2}(\vec{\theta}-\vec{\beta})^{2}-\psi(\vec{\theta})\right)
$$

$\Delta \tau_{A, B}=\tau\left(\theta_{A}, \beta\right)-\tau\left(\theta_{B}, \beta\right)=T_{d}\left(\frac{1}{2}\left(\vec{\theta}_{A}-\vec{\beta}\right)^{2}-\psi\left(\vec{\theta}_{A}\right)-\frac{1}{2}\left(\vec{\theta}_{B}-\vec{\beta}\right)^{2}+\psi\left(\vec{\theta}_{B}\right)\right)$

This is clearly model dependent: one needs to estimate the potential

A,B
For a singular isothermal sphere: $\quad \Delta \tau_{A, B} \propto\left(R_{A}^{2}-R_{B}^{2}\right)$ Kochaneck \& Schechter (2004)

- Images positions

How to interpret the time delay

First it is nothing really new...

If we minimize the time delay with respect to $\vec{\theta}$
We obtain the lens equation:
$\boldsymbol{\Delta}_{\tau}=\frac{\left(1+z_{L}\right)}{H_{0}} \frac{d_{L} d_{S}}{d_{L S}}\left(\frac{1}{2}(\vec{\theta}-\vec{\beta})^{2}-\psi(\vec{\theta})\right)$

$$
\vec{\beta}=\vec{\theta}-\vec{\nabla} \phi
$$

The formulation: time delay or lens equation Are seen as equivalent

The physical interpretation of the time delay

$$
\tau=\frac{\left(1+z_{L}\right)}{H_{0}} \frac{d_{L} d_{S}}{d_{L S}}\left(\frac{1}{2}(\vec{\theta}-\vec{\beta})^{2}-\psi(\vec{\theta})\right)
$$

Gravitational delay
(the Shapiro delay),

$$
\delta_{1}=a_{1}-D_{L S} \simeq \frac{1}{2} \frac{b^{2}}{D_{L S}} \quad \delta_{2}=a_{2}-D_{L} \simeq \frac{1}{2} \frac{b^{2}}{D_{L}}
$$

Q
a_{1}

$$
b=D_{L}(\theta-\beta)
$$

$$
\delta=\delta_{1}+\delta_{2}=\frac{D_{L} D_{S}}{D_{L S}}(\theta-\beta)^{2}
$$

$$
d_{I}=\left(\frac{c}{H_{0}}\right)^{-1} D_{I} \quad \tau \equiv \frac{\delta}{c} \quad \tau=\frac{\left(1+z_{L}\right)}{H_{0}} \frac{d_{L} d_{S}}{d_{L S}}\left(\frac{1}{2}(\vec{\theta}-\vec{\beta})^{2}-\psi(\vec{\theta})\right)
$$

With the appropriate scale factor we recover the geometric time delay

The Shapiro time delay

First predicted in 1964 by Irwin Shapiro

For a nearly static and weak field
The time delay due to the gravitational field
is directly proportional to the Newtonian potential

$$
\tau=\frac{\left(1+z_{L}\right)}{H_{0}} \frac{d_{L} d_{S}}{d_{L S}}\left(\frac{1}{2}(\vec{\theta}-\vec{\beta})^{2}-\psi(\vec{\theta})\right)
$$

How do time delay look like in practice?

Problem with time delay estimations

Some practical examples of light curves of images for a variety of lenses

Problem with time delay estimations

The time delay is model dependent

Any model of the potential or surface density is affected by the mass-sheet degeneracy

It is essential to find a method to deal with the mass-sheet degeneracy
Treu \& Koopmans (2002) propose to use stellar kinematics
Keeton \& Zabludoff (2004) use the environment of the lens (galaxy counts, weak lensing)

Some practical examples of light curves of images for a variety of lenses

A short review from the literature

PG 1115+080

Compilation For 11 systems

Eulaers
(2012)

System	Our Results	Published Values	Reference
JVAS B0218+357	$\Delta t_{A B}=9.9_{-0.9}^{+4.0}$	$\Delta t_{A B}=10.1_{-1.6}^{+1.5}$	Cohen et al. (2000)
	or	$\Delta t_{A B}=12 \pm 3$	Corbett et al. (1996)
	$\Delta t_{A B}=11.8 \pm 2.3$	$\Delta t_{A B}=10.5 \pm 0.4$	Biggs et al. (1999)
SBS 0909+523	unreliable	$\Delta t_{B A}=49 \pm 6$	Goicoechea et al. (2008)
		$\Delta t_{B A}=45_{-1}^{+11}$	Ullán et al. (2006)
RX J0911+0551	2 solutions:	$\Delta t_{B A}=150 \pm 6$	Burud (2001)
	$\Delta t_{B A} \sim 146$ or ~ 157	$\Delta t_{B A}=146 \pm 4$	Hjorth et al. (2002)
FBQS J0951+2635	unreliable	$\Delta t_{A B}=16 \pm 2$	Jakobsson et al. (2005)
HE 1104-1805	impossible to distinguish but identical within error bars	$\Delta t_{B A}=152_{-3.0}^{+2.8}$	Poindexter et al. (2007)
		$\Delta t_{B A}=161 \pm 7$	Ofek \& Maoz (2003)
		$\Delta t_{B A}=157 \pm 10$	Wyrzykowski et al. (2003)
		$\Delta t_{B A}=162.2_{-5.9}^{+6.3}$	Morgan et al. (2008a)
PG 1115+080	dependent on method	$\Delta t_{C A} \sim 9.4$	Schechter et al. (1997)
		$\Delta t_{C B}=23.7 \pm 3.4$	Schechter et al. (1997)
		$\Delta t_{C B}=25.0_{-3.8}^{+3.3}$	Barkana (1997)
JVAS B1422+231	contradictory results between methods: BAC or CAB?	$\Delta t_{B A}=1.5 \pm 1.4$	Patnaik \& Narasimha (2001)
		$\Delta t_{A C}=7.6 \pm 2.5$	
		$\Delta t_{B C}=8.2 \pm 2.0$	
SBS 1520+530	$\Delta t_{A B}=125.8 \pm 2.1$	$\Delta t_{A B}=130 \pm 3$	Burud et al. (2002c)
		$\Delta t_{A B}=130.5 \pm 2.9$	Gaynullina et al. (2005b)
CLASS B1600+434	$\Delta t_{A B}=47.8 \pm 1.2$	$\Delta t_{A B}=51 \pm 4$	Burud et al. (2000)
CLASS B1608+656	$\Delta t_{B A}=31.6 \pm 1.5$	$\Delta t_{B A}=31.5_{-1}^{+2}$	Fassnacht et al. (2002)
	$\Delta t_{B C}=35.7 \pm 1.4$	$\Delta t_{B C}=36.0 \pm 1.5$	
	$\Delta t_{B D}=77.5 \pm 2.2$	$\Delta t_{B D}=77.0_{-1}^{+2}$	
HE 2149-2745	unreliable	$\Delta t_{A B}=103 \pm 12$	Burud et al. (2002a)

Grillo etal. (2018)

Grillo etal. (2020)
$H_{0} \simeq 73 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$

Planck estimate $H_{0} \simeq 67.4 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$

Why do we observe un-correlated variability of the images of QSO 2337+0305 ?

Typical time scale of variations ~ a few months to years

Typical Einstein radius crossing time For a solar mass star in the galaxy A few hundred days

Wozniak etal. (2000)

What is going on?

- Quasar

Local stars

The deflection angle is perturbated By the field of the local stars

Typical Numbers

The main galaxy:

$$
M \simeq 10^{10} \text { solar mass } ; R_{E} \propto \sqrt{M} \rightarrow R_{E} \simeq 30 \mathrm{Kpc}
$$

$$
\text { Solar mass star: } \quad R_{E} \simeq \sqrt{10^{-10}} \times 30 \mathrm{kpc} \simeq 0.3 \mathrm{pc}
$$

Density in the solar neighborhood: 0.08 solarmass $/ p c^{3}$

Projected density in the solar neighborhood: $0.08 \times$ scale height $\simeq 0.08 \times 150 \simeq 12$ solar mass $/ p c^{2}$

$$
\text { Mean distance between stars: } \sqrt{\frac{1}{12}} \simeq 0.29 p c
$$

Use ray tracing to reconstruction the amplification map And the local caustics due to the stars

Local equations: total field=field of the galaxy+sum of the field of the local stars

$$
\left\{\begin{array}{l}
\phi=\sqrt{(1-\eta) x^{2}+(1+\eta) y^{2}}+\Sigma_{i} \mu_{i} \log \left(\left|\vec{r}-\vec{r}_{i}\right|\right) \\
\vec{r}_{s}=\vec{r}-\vec{\nabla} \phi
\end{array}\right.
$$

- Ray-tracing and amplification maps / caustics reconstruction

$$
\mu_{i}=\frac{m_{i}}{M_{0}} \quad \text { ratio of the mass of the star } m_{i} \text { to the mass of the galaxy } M_{0}
$$

Practical result

In practice we observe a trajectory of the quasar in this map

The structure of the source (quasar) as infered from caustic crossing (Finite source size effect)

Shalyapin etal. (2002)

Best model

standard accretion disk around a supermassive black hole
90% of the light is emitted by a region with size less than :1.2 $10^{-2} p c$

