Towards an universal model for strong gravitational lenses

The singular perturbative theory of gravitational lenses

General problems with the modeling of gravitational lenses
The singular background
The perturbative solution
Physical meaning of the perturbative fields
Caustics
Potential iso-contour
Relation to multipole expansion
Some selected applications
Statistical formulation
Future \& prospective

Reconstructing strong gravitational lenses

We observe different images of the source All images must remap to the same source This gives constraints on the potential: $\vec{r}_{s}=\vec{r}-\vec{\nabla} \phi$ Main problem: the potential models are degenerates

In the litterature we find NFW, cored-isothermal, power-law models, ...,all these models fit the data well

As a consequence

Possible models for a lens belong to large family of models
What are the common properties of all these models ?
What kind of non- degenerate information can we extract?

The problem is related to the nature of gravitational arcs What are gravitational arcs ?

Obviously gravitational arcs are some Perturbation of the Einstein ring situation

The source is slightly off-centered
The potential deviates from circular symmetry

First perturbation of the perfect ring situation
an off centered source
In a circularly symmetric potential

Second perturbation of the perfect ring situation a centered source
In a non-circularly symmetric potential

Elliptical potential

The general situation is a combination of both type of perturbations
I) Of centering of the source
II) Non circular perturbation of the potential

Thus we should write a perturbative theory of strong lensing

The perturbative fields should be the proper non-degenrate quantities

But a perturbative theory of strong lensing looks un-tractable For a simple reason

Main problem: strong lensing is highly non-linear

But the non-linearity is in the angular dimension only: is a perturbative theory possible?

Solving the problem

An effective perurbative theory of strong gravitational lensing

The singular perturbative solution

A perturbative approach is possible

if the un-perturbed situation is a singularity

A point is at the center Of a circularly symmetric potential

The point is not at the center The potential is not circularly symmetric

There is always
An un-perturbed point On the circle
Close to the perturbed point For any θ

This solution is the singular perturbative solution

We can find an un-perturbed point for any θ The perturbation is only in the radial dimension

$$
\begin{aligned}
& \phi(r, \theta)=\phi_{0}(r)+\epsilon \psi(r, \theta) \\
& r=1+\epsilon d r \\
& \vec{r}_{s}=\epsilon \vec{r}_{S}
\end{aligned} \quad \begin{aligned}
& \text { We expand only in dr } \\
& \text { from the unit Einstein circle }
\end{aligned}
$$

For convenience the un-perturbed Einstein circle has radius unity

$$
\left.\begin{array}{c}
\left.\begin{array}{c}
\phi(r, \theta)=\phi_{0}(r)+\epsilon \psi(r, \theta) \\
r=1+\epsilon d r
\end{array}\right\} \longrightarrow\left\{\begin{array}{c}
\phi_{0}(r) \simeq \phi_{0}(1)+\phi_{0}^{\prime}(1) \epsilon d r+\frac{1}{2} \phi_{0}^{\prime \prime}(1)(\epsilon d r)^{2} \\
\psi(r, \theta) \simeq \epsilon\left(f_{0}(\theta)+f_{1}(\theta) \epsilon d r\right)
\end{array}\right. \\
\quad \vec{r}_{s}=\vec{r}-\vec{\nabla} \phi=\left(r-\frac{\partial \phi}{\partial r}\right) \vec{u}_{r}-\frac{1}{r} \frac{\partial \phi}{\partial \theta} \vec{u}_{\theta} \quad \text { With: } \quad \partial r \equiv \partial \epsilon d r
\end{array}\right\} \begin{aligned}
& \phi_{0}(1)+\phi_{0}^{\prime}(1) \epsilon d r+\frac{1}{2} \phi_{0}^{\prime \prime}(1)(\epsilon d r)^{2}+\epsilon\left(f_{0}(\theta)+f_{1}(\theta) \epsilon d r\right) \\
& \vec{r}_{s}=\left(1-\phi_{0}^{\prime}(1)\right) \vec{u}_{r}+\left(\left(1-\phi_{0}^{\prime \prime}(1)\right) d r-f_{1}(\theta)\right) \vec{u}_{r}-\frac{d f_{0}}{d \theta} \vec{u}_{\theta}
\end{aligned}
$$

$$
\vec{r}_{s}=\left(1-\phi_{0}^{\prime}(1)\right) \vec{u}_{r}+\left(\left(1-\phi_{0}^{\prime \prime}(1)\right) d r-f_{1}(\theta)\right) \vec{u}_{r}-\frac{d f_{0}}{d \theta} \vec{u}_{\theta}
$$

Unperturbed unit
Einstein circle

$$
\vec{r}_{s}=\left(\left(1-\phi_{0}^{\prime \prime}(1)\right) d r-f_{1}(\theta)\right) \vec{u}_{r}-\frac{d f_{0}}{d \theta} \vec{u}_{\theta}
$$

$$
\kappa_{2}=1-\left[\frac{d^{2} \phi_{0}}{d r^{2}}\right]_{r=1} \longrightarrow \vec{r}_{s}=\left(\kappa_{2} d r-f_{1}\right) \vec{u}_{r}-\frac{d f_{0}}{d \theta} \vec{u}_{\theta}
$$

The singular perturbative theory

$$
\begin{aligned}
& \phi(r, \theta)=\phi_{0}(r)+\epsilon \psi(r, \theta) \quad r=1+\epsilon d r \quad \vec{r}_{s}=\epsilon \vec{r}_{S} \\
& \vec{r}_{s}=\vec{r}-\vec{\nabla} \phi \xrightarrow[r_{S}]{ }=\left(\kappa_{2} d r-f_{1}\right) \vec{u}_{r}-\frac{d f_{0}}{d \theta} \vec{u}_{\theta} \\
& f_{1}=\left[\frac{d \psi}{d r}\right] ; \quad f_{0}=\psi(1, \theta) \quad ; \quad \kappa_{2}=1-\left[\frac{d^{2} \phi_{0}}{d r^{2}}\right]_{r=1}
\end{aligned}
$$

For a circular source

$$
\begin{gathered}
\vec{r}_{s}=\left(\kappa_{2} d r-\widetilde{f}_{1}\right) \vec{u}_{r}-\frac{d \tilde{f}_{0}}{d \theta} \vec{u}_{\theta} \quad ; \quad\left|r_{s}\right|^{2}=r_{0}^{2} \\
\kappa_{2} d r=\widetilde{f}_{1} \pm \sqrt{r_{0}^{2}-\frac{d \tilde{f}_{0}^{2}}{d \theta}}
\end{gathered}
$$

The 2 perturbative fields have strong physical meaning
$\tilde{f}_{1} \quad$ Images positions (deviation from the circle)
$\frac{d \widetilde{f}_{0}}{d \theta} \quad$ Where the images forms (small values of the field)

Local minima

Physical meaning of the fields In the singular perturbative expansion

Exemple of reconstruction using the singular perturbative method Presentation of the of the lens systems

Isothermal lens source in sub-critical regime

Same lens perturbed by 1\% point mass

Reconstruction for the isothermal potential

Same lens perturbed by 1% point mass

Image formation
Isothermal case
$\frac{d f_{0}}{d \theta}$

Image formation
Perturbed
$\frac{d f_{0}}{d \theta}$

Equation for caustics

$$
\vec{r}_{s}=\left(\kappa_{2} d r-\widetilde{f}_{1}\right) \vec{u}_{r}-\frac{d \widetilde{f}_{0}}{d \theta} \vec{u}_{\theta} \quad J \propto \frac{\partial x_{s}}{\partial r} \frac{\partial y_{s}}{\partial \theta}-\frac{\partial x_{s}}{\partial \theta} \frac{\partial y_{s}}{\partial r}=0
$$

Critical lines: $\quad d r=\frac{1}{\kappa_{2}}\left[f_{1}+\frac{d^{2} f_{0}}{d \theta^{2}}\right]$

$$
x_{S}=\frac{d^{2} f_{0}}{d \theta^{2}} \cos \theta+\frac{d f_{0}}{d \theta} \sin \theta
$$

Caustics lines:

$$
y_{S}=\frac{d^{2} f_{0}}{d \theta^{2}} \sin \theta-\frac{d f_{0}}{d \theta} \cos \theta
$$

Potential iso-contours

$$
\phi(r, \theta)=\phi_{0}(r)+\epsilon f_{0}(\theta)+\epsilon f_{1}(\theta)(r-1)=C
$$

$$
\text { Potential iso-contour near unit Einstein circle } \quad r_{i}=1+\epsilon d r_{i}
$$

$$
\text { To first order leads to: } \quad d r_{i}=-f_{0}
$$

The Fourier series expansion of the fields
And the multipole expansion:
Inner and outer contribution can be separated

$$
\begin{gathered}
\psi=-\left(\sum_{n} \frac{a_{n}}{r^{n}} \cos n \theta+\frac{b_{n}}{r^{n}} \sin n \theta+c_{n} r^{n} \cos n \theta+d_{n} r^{n} \sin n \theta\right) \\
\left\{\begin{array}{l}
a_{n}=\frac{1}{2 \pi n} \int_{0}^{2 \pi} \int_{0}^{r=1} \rho(u, v) \cos n v u^{n+1} \mathrm{~d} u \mathrm{~d} v \\
b_{n}=\frac{1}{2 \pi n} \int_{0}^{2 \pi} \int_{0}^{r=1} \rho(u, v) \sin n v u^{n+1} \mathrm{~d} u \mathrm{~d} v \\
c_{n}=\frac{1}{2 \pi n} \int_{0}^{2 \pi} \int_{r=1}^{\infty} \rho(u, v) \cos n v u^{1-n} \mathrm{~d} u \mathrm{~d} v \\
d_{n}=\frac{1}{2 \pi n} \int_{0}^{2 \pi} \int_{r=1}^{\infty} \rho(u, v) \sin n v u^{1-n} \mathrm{~d} u \mathrm{~d} v
\end{array}\right.
\end{gathered}
$$

$$
\left\{\begin{array}{l}
f_{1}=\left(\frac{\partial \psi}{\partial r}\right)_{(r=1)}=\sum_{n} n\left(a_{n}-c_{n}\right) \cos n \theta+n\left(b_{n}-d_{n}\right) \sin n \theta \\
\frac{\mathrm{~d} f_{0}}{\mathrm{~d} \theta}=\left(\frac{\partial \psi}{\partial \theta}\right)_{(r=1)}=\sum_{n}-n\left(b_{n}+d_{n}\right) \cos n \theta+n\left(a_{n}+c_{n}\right) \sin n \theta
\end{array}\right.
$$

Knowing the perturbative field the multipole expansion Can be reconstructed

It allows to separate the inner terms
a_{n}, b_{n}
And the outer terms $\quad c_{n}, d_{n}$

How does the perturbative fields expansion works with real halo's?

Here we present some comparison between the contours Reconstructed for the perturbative method and real ray tracing

The perturbative expansion compared to ray tracing in numerical simulations (Peirani etal. 2008)

Some more comparisons

Some example of reconstruction With the singular perturbative method

1) single galaxy in perturbed environment
2) small group of galaxies
3) The cosmic horseshoe lens

Alard (2010)

The lens system and the reconstruction Of the 2 fields

Image and source reconstruction

Alard (2010)

The reconstruction of the potential iso-contours

— Inner iso-contour
Alard (2010)

Alard (2009)

Fields reconstruction for the lens

Image and source reconstruction

Potential reconstruction

Density reconstruction

In this small cluster mass does Not follow light

Reconstruction of the cosmic horseshoe

0.15
0.12
0.10
0.08
0.03
0.00

3
2*

Comparison of details original/reconstruction

Potential iso-contours

Source reconstruction

Source/caustic configuration

Very important assets of the perturbative analysis
Universal approach for all lenses
Universal modeling and parameters

Consequence:

It makes statistical analysis possible

The singular perturbative method A statistical approach

As an illustration: the statistical signature of substructures

The presence of substructure in the lens near the Einstein ring produce local perturbations

These local perturbations have specific statistical signature in the singular perturbative theory

In particular they stand up as higher order terms in the Fourier expansion of the fields.

The singular perturbative method A statistical approach

Analytical calculations of the perturbation due to a point mass

$$
\left\{\begin{array}{l}
f_{1}=\frac{m_{\mathrm{p}}\left[1-r_{\mathrm{p}} \cos \left(\theta-\theta_{\mathrm{p}}\right)\right]}{\sqrt{1-2 r_{\mathrm{p}} \cos \left(\theta-\theta_{\mathrm{p}}\right)+r_{\mathrm{p}}^{2}}}, \\
\frac{\mathrm{~d} f_{0}}{\mathrm{~d} \theta}=\frac{m_{\mathrm{p}}\left[r_{\mathrm{p}} \sin \left(\theta-\theta_{\mathrm{p}}\right)\right]}{\sqrt{1-2 r_{\mathrm{p}} \cos \left(\theta-\theta_{\mathrm{p}}\right)+r_{\mathrm{p}}^{2}}}
\end{array}\right.
$$

The effect on the fields as a function of the distance of the substructure

Alard (2008)

The statistical signature of substructure Alard (2008)

Power-law modelling of the Fourier expansion Coefficients as function of the substructure position

Mean ratio of the 2 fields Fourier coefficients

The substructure signature is a long tail at higher order in the Fourier expansion With distinct nature between the 2 fields.

The Fourier series expansion of the fields Is rich in statistical information

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} f_{0}}{\mathrm{~d} \theta}=\sum_{n} \alpha_{0, n} \cos (n \theta)+\beta_{0, n} \sin (n \theta), \\
f_{1}=\sum_{n} \alpha_{1, n} \cos (n \theta)+\beta_{1, n} \sin (n \theta), \\
P_{i}(n)=\alpha_{i, n}^{2}+\beta_{i, n}^{2}, \quad i=0,1 .
\end{array}\right.
$$

$$
\begin{gathered}
\psi=-\left(\sum_{n} \frac{a_{n}}{r^{n}} \cos n \theta+\frac{b_{n}}{r^{n}} \sin n \theta+c_{n} r^{n} \cos n \theta+d_{n} r^{n} \sin n \theta\right) \\
\left\{\begin{array}{l}
a_{n}=\frac{1}{2 \pi n} \int_{0}^{2 \pi} \int_{0}^{r=1} \rho(u, v) \cos n v u^{n+1} \mathrm{~d} u \mathrm{~d} v, \\
b_{n}=\frac{1}{2 \pi n} \int_{0}^{2 \pi} \int_{0}^{r=1} \rho(u, v) \sin n v u^{n+1} \mathrm{~d} u \mathrm{~d} v, \\
c_{n}=\frac{1}{2 \pi n} \int_{0}^{2 \pi} \int_{r=1}^{\infty} \rho(u, v) \cos n v u^{1-n} \mathrm{~d} u \mathrm{~d} v, \\
d_{n}=\frac{1}{2 \pi n} \int_{0}^{2 \pi} \int_{r=1}^{\infty} \rho(u, v) \sin n v u^{1-n} \mathrm{~d} u \mathrm{~d} v .
\end{array}\right.
\end{gathered}
$$

$$
\left\{\begin{array}{l}
f_{1}=\left(\frac{\partial \psi}{\partial r}\right)_{(r=1)}=\sum_{n} n\left(a_{n}-c_{n}\right) \cos n \theta+n\left(b_{n}-d_{n}\right) \sin n \theta \\
\frac{\mathrm{~d} f_{0}}{\mathrm{~d} \theta}=\left(\frac{\partial \psi}{\partial \theta}\right)_{(r=1)}=\sum_{n}-n\left(b_{n}+d_{n}\right) \cos n \theta+n\left(a_{n}+c_{n}\right) \sin n \theta
\end{array}\right.
$$

Multipole expansion

The statistical analysis of a large number of lenses (EUCLID)

Reconstruction of the 2 fields for many lenses
Fourier decomposition of the fields
Full statistic of the multipole expansion
Signature from complex halo geometry

Substructures
Light-mass offsets
Mass without light counterparts
New results (rings, caustics, filaments, holes,...)

Some practical example of the statistical information Available in the perturbative fields expansion

3 halo's from Peirani etal. (2008) analyzed in detail

The perturbative expansion compared to ray tracing in numerical simulations (Peirani etal. 2008)

The perturbative expansion compared to ray tracing in numerical simulations: the shape of the perturbative fields

$\mathrm{df}_{0}(\theta) \mathrm{d} \theta$

Einstein radius units

Lens	1	2	3	4	5	6	7
L_{0}	0.07	4.21	0.02	0.20	0.04	0.07	0.03
L_{1}	1.62	3.80	0.42	0.18	0.29	0.20	0.33
L_{2}	1.38	2.86	0.18	0.20	0.10	0.11	0.11

Table 2. Power spectra of $\tilde{f}_{1}(\theta)$ shown in the first column of Figure 3 .

Lens	1	2	3	4	5	6	7
L_{0}	0.08	8.17	0.04	0.39	0.02	0.08	0.03
L_{1}	1.14	4.12	0.32	1.50	0.28	0.59	0.24
L_{2}	1.54	5.36	0.20	0.74	0.07	0.14	0.18

Table 3. Power spectra of $\mathrm{d} \widetilde{f}_{0}(\theta) / \mathrm{d} \theta$ shown in the second column of Figure 3 .

The power spectrum of the perturbative fields expansion

For various halo's

When a large set of lens is available It will be possible to build a statistical analysis of the perturbative fields

The statistics of higher order terms will be a direct measure of DM substructure

The whole geometry of the halo's will be accessible
Allowing to probe the DM/matter offsets, difference in distribution
Presence of DM in unexpected places....

EUCLID is soon to be launched

