Dark Energy Instabilities induced by Gravitational Waves

with P. Creminelli, M. Lewandowski, F. Vernizzi arXiv: 1809.03484

with P. Creminelli, V. Yingcharoenrat, F. Vernizzi arXiv: 1906.07015, arXiv: 1910.14035

> IAP Paris 11 May 2020

Introduction

- General Relativity (GR) is very well tested on solar system scales. On cosmological scales it is equally successful, but we don't understand the nature of the dark sector
- The accelerated expansion could hint at new physics (e.g. Dark Energy (DE) theories)
- Surprisingly, we still lack powerful tests of GR on cosmological scales

$$-\frac{k^2}{a^2}\Phi = 4\pi\mu G_{\rm N}\rho_m\Delta_m \ , \quad \frac{\Phi}{\Psi} = \gamma$$

- Current constraints on μ , γ are $\sim \mathcal{O}(1)$
- Upcoming surveys (LSST, Euclid, SKA..) promise to achieve $\sim \mathcal{O}(10^{-2})$

- On shorter scales GR is much better constrained: viable modifications of gravity need some form of screening¹
- Gravitational wave (GW) observations provide new powerful tests of GR
- The emission of GWs from binaries not so useful so far (due to screening and computational difficulties)
- The propagation is promising: linear regime and sensitive to dark components

¹A. I. Vainshtein, Phys. Lett. B (1972), J. Khoury, A. Weltman Phys. Rev. Lett. (2004), K. Hinterbichler and J. Khoury, Phys. Rev. Lett. (2010)

Models of Dark Energy

Additional scalar field: Lorentz-violating fluid

· Simplest models of DE are given by scalar-tensor theories

· Simplest models of DE are given by scalar-tensor theories

$$\begin{split} \mathscr{L} &= R - \frac{1}{2}X - V(\phi) & \text{Quintessence} \\ \mathscr{L} &= f(\phi)R - \frac{1}{2}X - V(\phi) & \text{Brans-Dicke} \\ \mathscr{L} &= R - \mathcal{P}(\phi, X) & \text{k-essence} \end{split}$$

$$X \equiv g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi$$

· Simplest models of DE are given by scalar-tensor theories

$$\begin{split} \mathscr{L} &= R - \frac{1}{2}X - V(\phi) & \text{Quintessence} \\ \mathscr{L} &= f(\phi)R - \frac{1}{2}X - V(\phi) & \text{Brans-Dicke} \\ \mathscr{L} &= R - \mathcal{P}(\phi, X) & \text{k-essence} \end{split}$$

$$X \equiv g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi$$

Scalar fluctuations $\phi = \phi_0(t) + \pi(x)$ in FRW have generic speeds of sound c_s

$$\begin{aligned} X^2 \supset \dot{\phi}_0^2 \, \dot{\pi}^2 \\ \mathscr{L}_\pi \sim \dot{\pi}^2 - c_s^2 (\partial_i \pi)^2 \end{aligned}$$

• More general approach: consider also (stable) theories with higher-derivatives ${}^2 \mathscr{L}(\phi, \partial_\mu \phi, \nabla_\mu \nabla_\nu \phi)$

²G. W. Horndeski Int. J. Theor. Phys. (1974), C. Deffayet et al. PRD (2011) M. Zumalacárregui and J. García-Bellido PRD (2014), J. Gleyzes et al. PRL (2014)

• More general approach: consider also (stable) theories with higher-derivatives ${}^2 \mathscr{L}(\phi, \partial_\mu \phi, \nabla_\mu \nabla_\nu \phi)$

$$\begin{split} \mathscr{L}_{2} &= G_{2}(\phi, X) \\ \mathscr{L}_{3} &= G_{3}(\phi, X) \Box \phi \\ \mathscr{L}_{4} &= G_{4}(\phi, X) R - 2G_{4,X}(\phi, X) \left[\left(\Box \phi \right)^{2} - \phi_{\mu\nu} \phi^{\mu\nu} \right] \\ &- F_{4}(\phi, X) \epsilon_{\sigma}^{\mu\nu\rho} \epsilon^{\mu'\nu'\rho'\sigma} \phi_{\mu} \phi_{\mu'} \phi_{\nu\nu'} \phi_{\rho\rho'} \\ \mathscr{L}_{5} &= G_{5}(\phi, X) G_{\mu\nu} \phi^{\mu\nu} + \frac{1}{3} G_{5,X}(\phi, X) [(\Box \phi)^{3} - 3\Box \phi \phi_{\mu\nu} \phi^{\mu\nu} + 2\phi_{\mu\nu} \phi^{\sigma\mu} \phi_{\sigma}^{\nu}] \\ &- F_{5}(\phi, X) \epsilon^{\mu\nu\rho\sigma} \epsilon^{\mu'\nu'\rho'\sigma'} \phi_{\mu} \phi_{\mu'} \phi_{\nu\nu'} \phi_{\rho\rho'} \phi_{\sigma\sigma'} , \qquad \phi_{\mu} \equiv \nabla_{\mu} \phi \end{split}$$

²G. W. Horndeski Int. J. Theor. Phys. (1974), C. Deffayet et al. PRD (2011) M. Zumalacárregui and J. García-Bellido PRD (2014), J. Gleyzes et al. PRL (2014)

Scalar-tensor theories

Why so complicated theories?

- Massive Gravity: ³ longitudinal mode $g_{\mu\nu} \supset \partial_{\mu}\partial_{\nu}\phi$
- DGP: ⁴ higher dimensional gravity

5d Minkowski

- Brane-bending mode $g_{5\mu}\sim\partial_\mu\phi$
- Action with many derivatives but 2nd order equations: we can trust the classical non-linear regime

³C. de Rham, G. Gabadadze and A. Tolley PRL (2010)
 ⁴G. Dvali, G. Gabadadze and M. Porrati Phys. Lett. B (2000)

- The cosmological background solution $\phi_0(t)$ spontaneously breaks time-translation invariance
- Second derivatives give interesting phenomenology for tensors

For example:

$$(\nabla_{\mu}\nabla_{\nu}\phi)^2 \supset \dot{\phi}_0(\dot{\gamma}_{ij})^2$$

$$\mathscr{L}_{\gamma} \sim (\dot{\gamma}_{ij})^2 - c_T^2 (\partial_k \gamma_{ij})^2$$

Effective Field Theory Of Dark Energy

- Efficient way to study perturbations
- Clear connection with
 cosmological observables
- In a FRW and in unitary gauge $\delta \phi(t, x) = 0$ the action is geometrical

$$\mathrm{d}s^{2} = -N^{2}\mathrm{d}t^{2} + h_{ij}(N^{i}\mathrm{d}t + \mathrm{d}x^{i})(N^{j}\mathrm{d}t + \mathrm{d}x^{j})$$

$$S_{\rm EFT} = \int d^4 x \, N \sqrt{h} \left[\frac{M_{\star}^2}{2} f(t) R - \Lambda(t) - c(t) N + \frac{m_2(t)^4}{2} \delta N^2 + \dots \right]$$

⁴C. Cheung et al. JHEP (2008)

G. Gubitosi, F. Piazza and F. Vernizzi JCAP (2013)

LIGO Scientific and Virgo and Fermi-GBM and INTEGRAL Collaborations Astrophys. J. (2017)

- The condition $|\Delta c/c| \leq 10^{-15}$ sets tight constraints on DE models 5

$$\begin{split} \mathscr{L}_{2} &= G_{2}(\phi, X) \\ \mathscr{L}_{3} &= G_{3}(\phi, X) \Box \phi \\ \mathscr{L}_{4} &= G_{4}(\phi, X) R - 2G_{4,X}(\phi, X) \left[\left(\Box \phi \right)^{2} - \phi_{\mu\nu} \phi^{\mu\nu} \right] \\ &- F_{4}(\phi, X) \epsilon_{\sigma}^{\mu\nu\rho} \epsilon^{\mu'\nu'\rho'\sigma} \phi_{\mu} \phi_{\mu'} \phi_{\nu\nu'} \phi_{\rho\rho'} \\ \mathscr{L}_{5} &= G_{5}(\phi, X) G_{\mu\nu} \phi^{\mu\nu} + \frac{1}{3} G_{5,X}(\phi, X) [(\Box \phi)^{3} - 3\Box \phi \phi_{\mu\nu} \phi^{\mu\nu} + 2\phi_{\mu\nu} \phi^{\sigma\mu} \phi_{\sigma}^{\mu}] \\ &- F_{5}(\phi, X) \epsilon^{\mu\nu\rho\sigma} \epsilon^{\mu'\nu'\rho'\sigma'} \phi_{\mu} \phi_{\mu'} \phi_{\nu\nu'} \phi_{\rho\rho'} \phi_{\sigma\sigma'} \end{split}$$

 $XF_4 = 2G_{4,X} + G_{5,\phi}$

⁵P. Creminelli and F. Vernizzi PRL (2017), J. M. Ezquiaga and M. Zumalacárregui PRL (2017) T. Baker et al. PRL (2017), J. Sakstein and B. Jain PRL (2017)

• Only few models survive after this observation

$$\begin{split} \mathscr{L}_{c_T=1} &= B_4(\phi, X)R + G_2(\phi, X) + G_3(\phi, X) \Box \phi \\ &- \frac{4}{X} B_{4,X}(\phi, X) \left[\phi^\mu \phi^\nu \phi_{\mu\nu} \Box \phi - \phi^\mu \phi_{\mu\nu} \phi_\lambda \phi^{\lambda\nu} \right] , \qquad X \equiv -\frac{1}{2} (\nabla_\mu \phi)^2 \end{split}$$

• Only few models survive after this observation

$$\begin{split} \mathscr{L}_{c_T=1} &= B_4(\phi, X) R + G_2(\phi, X) + G_3(\phi, X) \Box \phi \\ &- \frac{4}{X} B_{4,X}(\phi, X) \left[\phi^{\mu} \phi^{\nu} \phi_{\mu\nu} \Box \phi - \phi^{\mu} \phi_{\mu\nu} \phi_{\lambda} \phi^{\lambda\nu} \right] , \qquad X \equiv -\frac{1}{2} (\nabla_{\mu} \phi)^2 \end{split}$$

• In the EFT language in unitary gauge this corresponds to

$$\begin{split} \mathscr{L}_{c_T=1}^{\text{EFT}} &= \frac{M_*^2}{2} f(t) R - \Lambda(t) - c(t) g^{00} + \frac{m_2^2(t)}{2} (\delta g^{00})^2 - \frac{m_3^3(t)}{2} \delta g^{00} \delta K \\ &+ \frac{\tilde{m}_4^2(t)}{2} \delta g^{00} \left({}^{(3)}R - \delta \mathcal{K}_2 \right) \end{split}$$

• Is this enough? Interactions could modify the GW signal

Effective Field Theory Of Dark Energy

• We will consider $S = S_0 + S_{m_3} + S_{\tilde{m}_4}$

$$\mathscr{L}_{0} = \sqrt{-g} \bigg[\frac{M_{\rm Pl}^{2}}{2} R - \lambda(t) - c(t) g^{00} + \frac{m_{2}^{4}(t)}{2} (\delta g^{00})^{2} \bigg] \quad m_{2} \text{ changes } c_{s}$$

$$\mathscr{L}_{m_3} = -\sqrt{-g}\,rac{m_3^3(t)}{2}\delta K\delta g^{00}$$
 m_3 cubic Horndeski

$$\mathscr{L}_{\tilde{m}_4} = \sqrt{-g} \, \frac{\tilde{m}_4^2(t)}{2} \delta g^{00} \left({}^{(3)}R + \delta K^{\nu}_{\mu} \delta K^{\mu}_{\nu} - \delta K^2
ight) \quad \tilde{m}_4 \text{ quartic beyond Horndeski}$$

Gravitational wave decay

- The cosmological background solution $\phi(t)$ spontaneously breaks time-translation invariance, with $\dot\phi\sim\Lambda_2^2$

 $\Lambda_2 \equiv (M_{\rm Pl}H_0)^{1/2}$ $\Lambda_3 \equiv (M_{\rm Pl}H_0^2)^{1/3}$

C. de Rham and S. Melville PRL (2018)

- Is $c_T = 1$ stable against radiative corrections? Yes, for theories with approx. Galilean invariance $\phi \rightarrow \phi + c + b_\mu x^\mu$
- Non-renormalization theorem ⁶ for Galileons. $\mathscr{L} = (\partial \phi)^2 + (\partial \phi)^2 \Box \phi / \Lambda_3^3$

$$\partial^{\mu}\phi_{\rm E}\partial_{\mu}\phi\Box\phi = \partial^{\mu}\phi_{\rm E}\partial_{\nu}\left[\partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}\eta_{\mu\nu}\partial^{\rho}\phi\partial_{\rho}\phi\right]$$

• With Gravity the symmetry is weakly-broken $^7.$ Galilean operators get loop corrections suppressed by $\Lambda_3^4/\Lambda_2^4\sim 10^{-40}$

⁶M. Luty, M. Porrati and R. Rattazzi JHEP (2003)

⁷D. Pirtskhalava et. al. JCAP (2015), L. Santoni, E. Trincherini and L. G. Trombetta JHEP (2018)

- We look for interactions between gravitons γ_{ij} and scalars $\phi = \phi_0(t) + \pi(x)$
- After imposing $c_T = 1$ we still have $c_s \neq 1$
- The action contains

$$S_{\tilde{m}_4} = \alpha_{\rm H} M_{\rm Pl}^2 \int d^4 x \, \sqrt{-g} \, \delta g^{00} \left[{}^{(3)}R + \delta K_{ij} \delta K^{ij} - \delta K^2 \right]$$
$$\supset \frac{\alpha_{\rm H}}{\Lambda_3^3} \int d^4 x \, \ddot{\gamma}_{ij} \partial_i \pi \partial_j \pi$$

- In covariant language $^8\,\alpha_{\rm H} = -2XB_{4,X}/B_4 \sim \tilde{m}_4^2/M_{\rm Pl}^2$

⁸E. Bellini and I. Sawicki JCAP (2014), Gleyzes et al. JCAP (2015)

- + For $c_s < 1$ GW can decay into Dark Energy fluctuations $\gamma \to \pi\pi$
- Similar to photon absorption in a material (e.g. photon-phonon interaction)
- · Rate of the process:

$$\Gamma_{\gamma \to \pi\pi} \simeq \left(\frac{\alpha_{\rm H}}{\Lambda_3^3}\right)^2 \frac{\omega^7 (1-c_s^2)^2}{480\pi c_s^7} \quad .$$

$$\omega = 2\pi f_{\rm gw}$$
, $\Lambda_3 \simeq (1000 \,{\rm Km})^{-1}$

- + LIGO/Virgo events are at a distance $d_s \sim 40 \, {
 m Mpc}$ with $f_{
 m gw} \sim 100 \, {
 m Hz}$
- The coupling $\alpha_{\rm H}$ is compatible with observations if $d_s\,\Gamma_{\gamma\to\pi\pi}\lesssim 1$ $\alpha_{\rm H}<10^{-10}$
- Appreciable modifications of GR on large-scales require $\alpha_{\rm H}\sim 0.1.$ Thus $\alpha_{\rm H}$ cannot affect cosmological observations 9

⁹P. Creminelli, M. Lewandowski, GT, F. Vernizzi JCAP (2018)

Gravitational Wave Dispersion

- For generic c_s , the coupling affects the dispersion of GWs
- Similar to a (frequency-dependent) refractive index in a material

- Loops generate quadratic operators with higher derivatives $\Delta \mathscr{L} \sim (\partial^4 \gamma_{ij})^2$

Gravitational Wave Dispersion

- For generic *c_s*, the coupling affects the dispersion of GWs
- Similar to a (frequency-dependent) refractive index in a material

- Loops generate quadratic operators with higher derivatives $\Delta \mathscr{L} \sim (\partial^4 \gamma_{ij})^2$
- The modified dispersion relation for GWs is

$$\omega^{2} = \boldsymbol{k}^{2} - \left(\frac{\alpha_{\rm H}}{\Lambda_{3}^{3}}\right)^{2} \frac{\boldsymbol{k}^{8}(1-c_{s}^{2})^{2}}{480\pi^{2}c_{s}^{7}} \log\left(-(1-c_{s}^{2})\frac{\boldsymbol{k}^{2}}{\mu_{0}^{2}} - i\epsilon\right)$$

Coherent effects

- However, realistic GWs have large occupation numbers: coherent effects lead to a Bose enhancement of the decay rate
- Cubic Horndeski gives a decay, but suppressed by $(\Lambda_3/\Lambda_2)^4 \sim 10^{-40}$

$$\mathscr{L}_{0} + \mathscr{L}_{m_{3}} = \frac{1}{4} (\dot{\gamma}_{ij})^{2} - \frac{1}{4} (\partial_{k} \gamma_{ij})^{2} + \frac{1}{2} \dot{\pi}^{2} - \frac{c_{s}^{2}}{2} (\partial_{i} \pi)^{2} + \frac{1}{\Lambda^{2}} \dot{\gamma}_{ij} \partial_{i} \pi \partial_{j} \pi + \dots$$

- Also, $\mathscr{L}_{\tilde{m}_4} \supset \frac{1}{\Lambda_\star^3} \ddot{\gamma}_{ij} \partial_i \pi \partial_j \pi$. Computations are the same, with the replacement $\Lambda^2 \to \Lambda_\star^3 \omega^{-1}$
- · The energy scales are defined as

$$\begin{split} \Lambda^2 &\simeq \frac{\Lambda_2^2}{\alpha_{\rm B} c_s^2} ~~ \Lambda_\star^3 \simeq \frac{\Lambda_3^3}{\alpha_{\rm H} c_s^2} \\ \Lambda_2^2 &\equiv M_{\rm Pl} H_0 ~, ~~ \Lambda_3^3 \equiv M_{\rm Pl} H_0^2 ~, ~~ \alpha_{\rm B} \equiv -\frac{m_3^3}{2M_{\rm Pl}^2 H} ~, ~~ \alpha_{\rm H} \equiv \frac{2\tilde{m}_4^2}{M_{\rm Pl}^2} \end{split}$$

• Non-linear galilean terms $(\partial \pi)^2 \partial^2 \pi$ and terms $\gamma \gamma \pi$ are also present

• For cubic Horndeski the quadratic action for π becomes

$$\mathscr{L}_{\pi} = \frac{\dot{\pi}^2}{2} - c_s^2 \frac{(\partial_k \pi)^2}{2} + \frac{1}{\Lambda^2} \dot{\gamma}_{ij} \,\partial_i \pi \partial_j \pi$$

Enhancement: large occupation number

$$\gamma_{ij} = M_{\rm Pl} h_0^+ \sin(\omega u) \epsilon_{ij}^+ , \quad \beta = \frac{h_0^+ \omega M_{\rm Pl}}{\Lambda^2 c_{\rm s}^2}$$

 $\ddot{\pi} - c_s^2 \partial_k^2 \pi + c_s^2 \beta \cos(\omega u) \epsilon_{ij}^+ \partial_i \partial_j \pi = 0$

Coherent effects

• In momentum space for $c_s < 1$

 $\frac{\mathrm{d}^2 \pi_{\boldsymbol{p}}}{\mathrm{d}\tau^2} + \left(A_{\boldsymbol{p}} - 2q_{\boldsymbol{p}}\cos(2\tau)\right)\pi_{\boldsymbol{p}} = 0$

- Mathieu equation: instability bands
- Resonant modes $\pi_{p} \sim e^{\mu_{p} \tau}$
- For small coupling $\beta \ll 1$ the characteristic exponent $\mu \sim \beta$
- For $\beta \sim 10^{-1}$ we have $\rho_{\pi} \sim \rho_{\gamma}$ after $\mathcal{N}_{cyc} = \tau/\pi \sim 10^{3}$

$$\begin{split} \tau &= \frac{\omega u}{2} , \quad \Omega = p_z / |\mathbf{p}| \\ A_{\mathbf{p}} &= \frac{4c_s^2 \mathbf{p}^2 (1 - c_s \Omega)^2}{\omega^2 (1 - c_s^2)^2} \\ q_{\mathbf{p}} &= 2\beta \frac{c_s^2 \mathbf{p}^2}{\omega^2} \frac{1 - \Omega^2}{1 - c_s^2} \cos(2\varphi) \end{split}$$

Coherent effects: GW modification

• DE back-reacts on the metric

$$\Box \gamma_{ij} + \frac{2}{\Lambda^2} \Lambda_{ij,kl} \partial_t \left\langle \partial_k \pi \partial_l \pi \right\rangle = 0$$

- $\Lambda_{ij,kl}$ is the projector along the direction of propagation
- Can be evaluated in the saddle-point approximation $(eta au o\infty)$

$$\Delta \gamma_{ij}(u,v) \simeq -\frac{\omega^4 v}{4c_s^5 \sqrt{\beta} \Lambda^2} \frac{(1-c_s^2)^2}{(8\pi\omega u)^{3/2}} \sin\left(\omega u\right) e^{\beta\omega u/4} \epsilon_{ij}^+$$

- The resonance is altered when non-linearities become comparable with resonant term (rescattering) $^{\rm 10}\,$
- Galilean structure of self-interactions:

$$\mathscr{L}_3 = \frac{1}{M^3} \Box \pi \left(\partial_\mu \pi \right)^2 , \qquad M^3 \sim \frac{\Lambda_3^3}{\alpha_{\rm B} c_s^3} \qquad vs \qquad \frac{1}{\Lambda^2} \dot{\gamma} (\partial_i \pi)^2$$

- For \mathscr{L}_3 this happens when: $(\partial_i \pi)^2 \sim h_0^2 \Lambda_2^4$

$$\frac{\Delta\gamma}{\bar{\gamma}} \sim \frac{v(\partial_i \pi)^2}{\Lambda^2 M_{\rm Pl} h_0^+} \sim (vH_0) h_0 \alpha_{\rm B} c_s^2 \ll 1$$

¹⁰T. Prokopec and T. G. Roos PRD (1997)P. Adshead, J. T. Giblin, and Z. J. Weiner PRD (2017)

• For quartic galileons the dominant NL is quartic:

$$\mathscr{L}_4 = \frac{1}{\Lambda_c^6} (\partial_\mu \pi)^2 \left[(\Box \pi)^2 - (\partial_\mu \partial_\nu \pi)^2 \right] , \qquad \Lambda_c^6 \sim \frac{\Lambda_3^6}{\alpha_{\rm H} c_s^4} \qquad \textit{vs} \qquad \frac{1}{\Lambda_\star^3} \ddot{\gamma} (\partial_i \pi)^2$$

• The geometry of the system suppresses the interactions (quartic Galileon interactions vanish in 2d)

$$\frac{\Delta\gamma}{\bar{\gamma}} \sim \frac{v\,\omega(\partial_i\pi)^2}{\Lambda_\star^3 M_{\rm Pl}h_0^+} \lesssim \beta c_s(vH_0) \frac{H_0}{\omega h_0^+} \sqrt{\beta\tau}$$

Observational signatures for \tilde{m}_4^2

P. Creminelli, GT, F. Vernizzi, V. Yingcharoenrat JCAP (2019)

- Modified dispersion and decay arise from spontaneous breaking of Lorentz invariance
- · The landscape of viable DE models is reduced to

 $\mathscr{L}_{c_T=1}^{\text{no decay}} = G_2(\phi, X) + G_3(\phi, X) \Box \phi + f(\phi) R$

• The Cubic Galileon gives a decay, but perturbative analysis is inconclusive. We can study the non-linear stability of the model in the regime $\beta > 1$ **Classical Stability**

- Let us focus on m_3^3 / cubic Galileon model with $c_s < 1$
- Even though the parametric resonance is not relevant for this operator, the regime $\beta>1$ looks problematic

$$\mathscr{L}_{\pi} = \frac{\dot{\pi}^2}{2} - c_s^2 \frac{(\partial_k \pi)^2}{2} + \frac{1}{\Lambda^2} \dot{\gamma}_{ij} \, \partial_i \pi \partial_j \pi + \dots$$
$$\sim \frac{\dot{\pi}^2}{2} - \frac{c_s^2}{2} (1 - \beta) (\partial_k \pi)^2 \implies \text{Gradient instability } \pi \sim e^{\Lambda_{\text{UV}} t}$$

- Do non-linearities quench the instability? We need to study the full stability of the model at non-linear level: GW can generate a background for $\pi^{\ 11}$

¹¹A. Nicolis and R. Rattazzi JHEP (2004), S. Dubovsky et.al. JHEP (2006)

Conditions for stability

• The quadratic Lagrangian and EOM for $\delta \pi$ around a configuration $\hat{\pi}(x)$ (for frequencies $\omega \gg \partial \hat{\pi}(x)/\hat{\pi}(x)$) are

 $\mathscr{L}_{\delta\pi} = Z_{\mu\nu}[\hat{\pi}(x)]\partial^{\mu}\delta\pi\partial^{\nu}\delta\pi , \qquad Z_{\mu\nu}[\hat{\pi}(x)]\partial^{\mu}\partial^{\nu}\delta\pi = 0$

- The dispersion relation is obtained by the solutions of $Z_{\mu\nu}k^{\mu}k^{\nu}=0$
- Absence of gradient instabilities \Rightarrow all solutions for k^{μ} are real. Equivalently the matrix $Z_{0i}Z_{0j} - Z_{00}Z_{ij}$ has to be positive-definite
- Absence of ghost instabilities $\Rightarrow Z_{00} > 0$

Classical Stability: stability theorem for the cubic Galileon

- It seems difficult the system becomes unstable because of the stability theorem for the cubic Galileon ¹²
- · The background EOM and kinetic matrix for perturbations are

$$\begin{split} \tilde{K}^2 - \tilde{K}^2_{\mu\nu} - 3\tilde{K} &= -\frac{T}{4\Lambda^3 M_4} , \quad Z_{\mu\nu} = -3\eta_{\mu\nu} - 2\left(\tilde{K}_{\mu\nu} - \eta_{\mu\nu}\tilde{K}\right) \\ \tilde{K}_{\mu\nu} &\equiv -\frac{1}{M^3}\partial_{\mu}\partial_{\nu}\hat{\pi} \end{split}$$

- $Z_{\mu\nu}$ is assumed to be diagonalizable at each point (corresponding to non-relativistic matter sources)
- If the system is stable at one point, then it is stable everywhere: marginally stable configurations (e.g. $Z_{00} = 0$) are not solutions of the EOM
- Other Galileons do not have this property ¹³

¹²A. Nicolis and R. Rattazzi JHEP (2004)

¹³S. Endlich and J. Wang JHEP (2011)

Classical Stability: Regime $\beta > 1$

• We need to consider the full cubic action ($\gamma \pi \pi$ and $\gamma \gamma \pi$ vertexes)

$$\mathscr{L} = -\frac{1}{2}\bar{\eta}^{\mu\nu}\partial_{\mu}\pi\partial_{\nu}\pi - \underbrace{\frac{1}{M^{3}}\Box\pi(\partial\pi)^{2}}_{\text{cubic NL}} + \underbrace{\frac{\dot{\gamma}_{\mu\nu}}{\Lambda^{2}}\partial^{\mu}\pi\partial^{\nu}\pi}_{\text{decay}} - \underbrace{\frac{M^{3}}{2\Lambda^{4}}\dot{\gamma}_{\mu\nu}\dot{\gamma}^{\mu\nu}\pi}_{\text{GR non-linear term}}$$

•
$$\bar{\eta}_{\mu\nu} = \text{diag}(-1, c_s^2, c_s^2, c_s^2)$$
. The coefficient $\beta \sim \frac{\dot{\gamma}_{\mu\nu}}{\Lambda^2} > 1$

• The kinetic matrix for perturbations is

$$Z_{\mu\nu} = -\frac{1}{2}\bar{\eta}_{\mu\nu} - 2(K_{\mu\nu} - \eta_{\mu\nu}K) + \frac{\dot{\gamma}_{\mu\nu}}{\Lambda^2}, \qquad K_{\mu\nu} \equiv \partial_{\mu}\partial_{\nu}\hat{\pi}/M^3$$

- The equation of motion for $\hat{\pi}$ is

$$\frac{1}{3}Z^2 - Z^2_{\mu\nu} = \frac{3c_s^2 - 1}{6}$$
 The GW cancels out

Classical Stability: Regime $\beta > 1$ and $c_s < 1$

- The system is apparently stable since the equations are as in flat space. If $\gamma_{\mu\nu} = \gamma_{\mu\nu}(u)$ we can solve the equation explicitly
- Translational invariance in (x, y, v) and $c_s < 1$ imply $\hat{\pi}''(u) = -\frac{M^3}{2(1-c_s^2)\Lambda^4}\dot{\gamma}_{\mu\nu}^2$
- The matrix $Z_{\mu\nu}$ has components

$$Z^{00} = \frac{1}{2} + 2\frac{\hat{\pi}''}{M^3} , \quad Z^{03} = Z^{30} = 2\frac{\hat{\pi}''}{M^3} , \quad Z^{33} = -\frac{c_s^2}{2} + 2\frac{\hat{\pi}''}{M^3}$$
$$Z^{11} = -\frac{c_s^2}{2} + \frac{\dot{\gamma}_{11}}{\Lambda^2} , \quad Z^{22} = -\frac{c_s^2}{2} + \frac{\dot{\gamma}_{22}}{\Lambda^2}$$

• No contradictions: instabilities appear when $Z_{\mu\nu}$ is not diagonalizable

P. Creminelli, GT, F. Vernizzi, V. Yingcharoenrat, JCAP (2020)

Classical Stability: Regime $\beta > 1$ and $c_s < 1$

- The entries Z^{11} and Z^{22} can have the wrong sign: $\beta > 1 \Rightarrow$ gradient instability
- Ghost instabilities are present when Z^{00} changes sign: $\beta^2>(1-c_s^2)c_s^{-4}\Rightarrow {\rm ghost\ instability}$

Classical Stability: phenomenological consequences

• For massive BHs (MBHs), $\omega \ll \Lambda_{\rm UV}$. In a region of $10 \, {\rm Mpc}$ we have a large number of halo mergers (and so MBHs mergers) in the last Hubble time ¹⁴

¹⁴M. Bonetti et. al. Mon. Not. Roy. Astron. Soc. (2018)
 M. Bonetti et. al. Mon. Not. Roy. Astron. Soc. (2019)

Fate of the instability

- The theory is unstable: the fastest-growing modes are at the cutoff
- Thus, the fate of the instability depends on the UV completion (not known for Horndeski theories)
- Gradient and ghost instabilities can appear in the low-energy EFT of stable UV complete models
- Example: $\mathcal{P}(X)$ around a constant \hat{X} background can develop gradient and ghost instabilities. Here the UV completion is stable: U(1) complex scalar ϕ in the broken phase

$$\begin{aligned} \mathscr{L} &= -|\partial h|^2 - \lambda (|h|^2 - v^2)^2 \\ h &= \rho \, e^{i\phi} \,, \ \langle \rho \rangle = v^2 - \frac{X}{2\lambda} \,, \ X \equiv (\partial \phi)^2 \\ h_0 &= -\frac{X}{2\lambda} + v^2 \,, \ \phi = \hat{\phi} + \pi \,, \ h = h_0 + \delta h \end{aligned}$$

Fate of the instability: U(1) example

- At low energies and for small coupling, h can be integrated out
- The IR theory is $\mathscr{L}_{\mathrm{IR}}\simeq -\frac{X}{4\lambda}(\mu^2-X)\;,\;\;\mu\equiv 4\lambda v^2$
- Around a background $\hat{X} < 0$, the fluctuations π are stable For $\hat{X} > 0$ the system becomes gradient unstable for $\mu^2/6 < \hat{X} < \mu^2/2$. For larger values it is also ghost unstable
- In the UV, gradient instabilities correspond to tachyons: rate of growth $\sim \mu$ (saturated by the cutoff of the EFT)
- When we encounter ghosts, the EFT breaks down: δh becomes massless

Conclusions

- GW propagation provides new stringent constraints on DE theories
- Spontaneous breaking of Lorentz invariance allows for GW decay
- + For $\beta < 1$ quantum and classical decay rule out quartic beyond Horndeski. Inconclusive analysis for cubic Horndeski
- + For $\beta > 1$ cubic Horndeski becomes gradient and ghost unstable: theory becomes UV sensitive: the EFT is not viable
- The fate of $\gamma_{\mu\nu}$ is undetermined in absence of a concrete UV completion. New constrains on α_B

- GW propagation provides new stringent constraints on DE theories
- Spontaneous breaking of Lorentz invariance allows for GW decay
- + For $\beta < 1$ quantum and classical decay rule out quartic beyond Horndeski. Inconclusive analysis for cubic Horndeski
- + For $\beta > 1$ cubic Horndeski becomes gradient and ghost unstable: theory becomes UV sensitive: the EFT is not viable
- The fate of $\gamma_{\mu\nu}$ is undetermined in absence of a concrete UV completion. New constrains on α_B

Thank you for listening

Backup slides

Constrains for Degenerate Theories

- Degenerate Higher Order Theories (DHOST) 15 are compatible with $c_{\rm T}=1$

$$\mathscr{L}_{\text{DHOST}} = \frac{M^2}{2} \left[-\frac{2}{3} \alpha_{\text{L}}(t) \delta K^2 + 4\beta_1(t) \delta K V + \beta_2(t) V^2 + \beta_3(t) a_i a^i \right]$$
$$V \equiv -\frac{1}{2} (\dot{g}^{00} - N^i \partial_i g^{00}) / g^{00} , a_i \equiv -\frac{1}{2} \partial_i g^{00} / g^{00}$$

- Degeneracy conditions between β_i 's keeps 1 scalar d.o.f.
- In the case of $\alpha_{\rm B},$ relevant parameter for $\gamma \to \pi\pi$ is

$$\alpha_{\rm B} - \frac{\alpha_{\rm M}}{2} (1 - \beta_1) + \beta_1 - \dot{\beta}_1 H , \qquad \alpha_{\rm M} \equiv \frac{(M^2)}{M^2 H}$$

+ For $\alpha_{\rm H}$ instead the constrained parameter is

$$\alpha_{\rm H} + 2\beta_1$$

¹⁵D. Langlois and K. Noui JCAP (2016), M. Crisostomi, K. Koyama, and G. Tasinato JCAP (2016)

- Kinetic Braiding: $\alpha_{\rm B} \delta g^{00} \delta K$ gives a mixing $\Phi \sim \alpha_{\rm B} H \pi$. It enhances the gravitational attraction on short scales, weakens it on large scales. Observational signatures in e.g. the matter power spectrum ¹⁶
- Kinetic Matter Mixing: $\alpha_H \delta g^{00} \left({}^{(3)}R + \delta K^{\nu}_{\mu} \delta K^{\mu}_{\nu} \delta K^2 \right)$ gives a mixing $\Phi \sim \alpha_H \dot{\pi}$. It weakens gravitational attraction: on short scales the matter power spectrum gets suppressed ¹⁷

$$\alpha_{\rm B} \equiv -\frac{m_3^3}{2M_{\rm Pl}^2 H} , \quad \alpha_{\rm H} \equiv \frac{2\tilde{m}_4^2}{M_{\rm Pl}^2}$$

¹⁶M. Zumalacárregui et. al. JCAP (2017)
 ¹⁷G. D'Amico et. al. JCAP (2017)

Summary

EFT of DE operator	$\frac{1}{2}\tilde{m}_4^2\delta g^{00}\left(^{(3)}R+\delta\mathcal{K}_2\right)$	$m_3^3 \delta g^{00} \delta K$
GLPV operator	$-\frac{2Xf, X}{f}$	$\frac{2Xf_{,X}}{f} + \frac{\dot{\phi}XQ_{,X}}{2Hf}$
α_i	$lpha_{ m H}$	$\alpha_{ m B}$
After conf. transformation	$\alpha_{\rm H} + 2\beta_1$	$\alpha_{\rm B} - \frac{\alpha_{\rm M}}{2} (1 - \beta_1) + \beta_1 - \frac{\dot{\beta}_1}{H}$
Perturbative decay	$ \alpha_{\rm H} \gtrsim 10^{-10}$	Irrelevant
Narrow resonance	$10^{-20} \lesssim \alpha_{\rm H} \lesssim 10^{-17}$	Not applicable
	$10^{-16} \lesssim \alpha_{\rm H} \lesssim 10^{-10}$	
Instability	$ \alpha_{\rm H} \gtrsim 10^{-20}$	$ \alpha_{\rm B} \gtrsim 10^{-2}$

$$\mathscr{L}_{c_T=1} = P(\phi, X) + Q(\phi, X) \Box \phi + f(\phi, X) R - \frac{4f_{,X}}{X} (\phi^{;\mu} \phi^{;\nu} \phi_{;\mu\nu} \Box \phi - \phi^{;\mu} \phi_{;\mu\nu} \phi_{;\lambda} \phi^{;\lambda\nu})$$

Viable theory ($c_T = 1$, no decay and no gradients):

 $\mathscr{L} = P(\phi, X) + f(\phi)R$, plus conf. transformations $g_{\mu\nu} \to C(\phi, X)g_{\mu\nu}$