Quantum singularity avoidance and Bianchi \mathfrak{I} clocks

Institut d'Astrophysique de Paris Institut Lagrange de Paris
SORBONNE
UNIVERSITÉ
CRÉATEURS DE FUTURS

Motivations: (quantum) cosmology

Homogeneous \& isotropic metric (FLRW): $\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-\mathcal{K} r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]$ Hubble rate $H \equiv \frac{\dot{a}}{a}$

Matter component: perfect fluid $T_{\mu \nu}=p g_{\mu \nu}+(\rho+p) u_{\mu} u_{\nu}$

$$
\text { equation of state } \quad p=w \rho \longrightarrow \begin{cases}w=0 & \text { dust } \\ w=\frac{1}{3} & \text { radiation }\end{cases}
$$

+ cosmological constant $=$ Einstein equations

$$
\left\{\begin{array}{l}
H^{2}+\frac{\mathcal{K}}{a^{2}}=\frac{1}{3}\left(8 \pi G_{\mathrm{N}} \rho+\Lambda\right) \\
\frac{\ddot{a}}{a}=\frac{1}{3}\left[\Lambda-4 \pi G_{\mathrm{N}}(\rho+3 p)\right]
\end{array}\right.
$$

Particular solution: dust and radiation

integrate conservation equation

$$
\rho[a(t)]=\rho_{\mathrm{ini}} \exp \left\{-3 \int[1+w(a)] \mathrm{d} \ln a\right\} \underset{w \rightarrow \mathrm{cst}}{=} \rho_{\mathrm{ini}}\left(\frac{a}{a_{\mathrm{ini}}}\right)^{-3(1+w)}
$$

Phenomenologically valid description for 14 Gyrs!!!!

$$
\begin{aligned}
& n_{\mathrm{s}}=0.9639 \pm 0.0047 \text { almost scale invariant } \\
& \left.\left.\begin{array}{l}
f_{\mathrm{NL}}^{\mathrm{loc}}=0.8 \pm 5 \\
f_{\mathrm{NL}}^{\mathrm{eq}}=-4 \pm 43 \\
f_{\mathrm{NL}}^{\mathrm{ort}}=-26 \pm 21
\end{array}\right\} \begin{array}{c}
\text { excluded } \\
\quad r<0.08
\end{array}\right\} \text { gaussian signal } \\
& \text { isocurvature } \lesssim 1 \%
\end{aligned}
$$

quantum vacuum fluctuations of a single scalar d.o.f

Numerical simulation for large scale structure formation...

A central problem (though not often formulated thus...): the singularity

Singularity problem...

a quantum effect?

Quantum cosmology

Hamiltonian GR (3+1)

Action (Einstein-Hilbert, compact space):

$$
\begin{array}{r}
\mathcal{S}=\frac{1}{16 \pi G_{\mathrm{N}}}\left[\int_{\mathcal{M}} \sqrt{-g}(R-2 \Lambda) \mathrm{d}^{4} x+2 \int_{\partial \mathcal{M}} \sqrt{h} K^{i}{ }_{i} \mathrm{~d}^{3} x\right]+\mathcal{S}_{\text {matter }}[\Phi(x)] \\
\longrightarrow \mathcal{S}=\int L \mathrm{~d} t=\frac{1}{16 \pi G_{\mathrm{N}}} \int \mathrm{~d} t\left[\int \mathrm{~d}^{3} x N \sqrt{h}\left(K_{i j} K^{i j}-K^{2}+{ }^{3} R-2 \Lambda\right)+L_{\text {matter }}\right]
\end{array}
$$

Canonical momenta

$$
\left.\begin{array}{rl}
\pi^{i j} & \equiv \frac{\delta L}{\delta \dot{h}_{i j}}=-\frac{\sqrt{h}}{16 \pi G_{\mathrm{N}}}\left(K^{i j}-h^{i j} K\right) \\
\pi^{\Phi} & \equiv \frac{\delta L}{\delta \dot{\Phi}}=-\frac{\sqrt{h}}{N}\left(\dot{\Phi}-N \frac{\partial \Phi}{\partial x^{i}}\right) \\
\pi^{0} & \equiv \frac{\delta L}{\delta \dot{N}} \approx 0 \\
\pi^{i} & \equiv \frac{\delta L}{\delta \dot{N}^{i}} \approx 0
\end{array}\right\} \text { primary constraints } \quad \text {. }
$$

$$
\begin{aligned}
& \text { Hamiltonian } H=\int \mathrm{d}^{3} x\left(\pi^{0} \dot{N}+\pi^{i} \dot{N}_{i}+\pi^{i j} \dot{h}_{i j}+\pi^{\Phi} \dot{\Phi}\right)-L \\
& =\int \mathrm{d}^{3} x\left(\pi^{0} \dot{N}+\pi^{i} \dot{N}_{i}+N \mathcal{H}+N_{i} \mathcal{H}^{i}\right) \\
& \mathcal{H}=\frac{1}{\sqrt{h}}\left(h_{i k} h_{j l}-\frac{1}{2} h_{i j} h_{k l}\right) \pi^{i j} \pi^{k l}-\sqrt{h}{ }^{3} R \\
& \mathcal{H}^{i}=-2 \sqrt{h} \nabla_{j}\left(\frac{\pi^{i j}}{\sqrt{h}}\right)
\end{aligned}
$$

variation wrt lapse: $\mathcal{H}=0 \rightarrow$ Hamiltonian constraint $\}$
\Longrightarrow classical description complete variation wrt shift: $\mathcal{H}^{i}=0 \rightarrow$ momentum constraint $\}$

Superspace \& canonical quantization
relevant configuration space $\operatorname{Riem}(\Sigma) \equiv\left\{h_{i j}\left(x^{\mu}\right), \Phi\left(x^{\mu}\right) \mid x \in \Sigma\right\}$
parameters
$\mathrm{GR} \Longrightarrow$ invariance/diffeomorphisms \Longrightarrow Conf $=\frac{\operatorname{Riem}(\Sigma)}{\operatorname{Diff}(\Sigma)}$: superspace

Wave functional $\Psi\left[h_{i j}(x), \Phi(x)\right]=\left\langle h_{i j}, \Phi \mid \Psi\right\rangle$

+ Dirac canonical quantization procedure

$$
\pi^{i j} \rightarrow-i \frac{\delta}{\delta h_{i j}} \quad \pi^{\Phi} \rightarrow-i \frac{\delta}{\delta \Phi} \quad \pi^{0} \rightarrow-i \frac{\delta}{\delta N} \quad \pi^{i} \rightarrow-i \frac{\delta}{\delta N_{i}}
$$

primary constraints $\left\{\begin{array}{l}\hat{\pi}^{0}=-i \frac{\delta \Psi}{\delta N}=0 \\ \hat{\pi}^{i}=-i \frac{\delta \Psi}{\delta N_{i}}=0\end{array}\right.$
momentum $\quad \hat{\mathcal{H}}^{i} \Psi=0 \quad \Longrightarrow \quad i \nabla_{j}^{(h)}\left(\frac{\delta \Psi}{\delta h_{i j}}\right)=8 \pi G_{\mathrm{N}} \hat{T}^{0 i} \Psi$
same Ψ for configurations related by a coordinate transformation
Hamiltonian

$$
\begin{aligned}
& \hat{\mathcal{H}} \Psi=\left[-16 \pi G_{\mathrm{N}} \mathcal{G}_{i j k l} \frac{\delta^{2}}{\delta h_{i j} \delta h_{k l}}+\frac{\sqrt{h}}{16 \pi G_{\mathrm{N}}}\left(-{ }^{3} R+2 \Lambda+16 \pi G_{\mathrm{N}} \hat{T}^{00}\right)\right] \Psi=0 \\
& \text { Gheeler-De Witt equation } \\
& \mathcal{G}_{i j k l}=\frac{1}{2 \sqrt{h}}\left(h_{i k} h_{j l}+h_{i l} h_{j k}-h_{i j} h_{k l}\right) \quad \text { Wherric } \\
& \text { De Witt metric }
\end{aligned}
$$

primary constraints $\left\{\begin{array}{l}\hat{\pi}^{0}=-i \frac{\delta \Psi}{\delta N}=0 \\ \hat{\pi}^{i}=-i \frac{\delta \Psi}{\delta N_{i}}=0\end{array}\right.$
momentum $\hat{\mathcal{H}}^{i} \Psi=0 \quad \Longrightarrow \quad i \nabla_{j}^{(h)}\left(\frac{\delta \Psi}{\delta h_{i j}}\right)=8 \pi G_{\mathrm{N}} \hat{T}^{0 i} \Psi$
same Ψ for configurations related by a coordinate transformation
Hamiltonian

$$
\hat{\mathcal{H}} \Psi=0
$$

time-independent Schrödinger equation
primary constraints $\left\{\begin{array}{l}\hat{\pi}^{0}=-i \frac{\delta \Psi}{\delta N}=0 \\ \hat{\pi}^{i}=-i \frac{\delta \Psi}{\delta N_{i}}=0\end{array}\right.$
momentum $\hat{\mathcal{H}}^{i} \Psi=0 \quad \Longrightarrow \quad i \nabla_{j}^{(h)}\left(\frac{\delta \Psi}{\delta h_{i j}}\right)=8 \pi G_{\mathrm{N}} \hat{T}^{0 i} \Psi$
same Ψ for configurations related by a coordinate transformation
Hamiltonian

$$
\hat{\mathcal{H}} \Psi=0
$$

TIMELESS Schrödinger equation
mini-superspace
restrict attention from an infinite dimensional configuration space to a 2 dimensional space = mini-superspace

$$
h_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j} \quad \mapsto \quad a^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-\mathcal{K} r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]
$$

WDW equation becomes Schrödinger like for $\Psi[a(t), \phi(t)]$

Conceptual \& technical issues
infinite \# d.o.f. to a few: mathematical consistency?
freeze momenta... Heisenberg uncertainties?
[quantization, minisuperspace] $\neq 0$
mini-superspace
restrict attention from an infinite dimensional configuration space to a 2 dimensional space = mini-superspace

$$
h_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j} \quad \mapsto \quad a^{2}(t)\left[\frac{\mathrm{d} r^{2}}{1-\mathcal{K} r^{2}}+r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right]
$$

WDW equation becomes Schrödinger like for $\Psi[a(t), \phi(t)]$

Conceptual \& technical issues

ACTUALLY MAKE CALCULATIONS!

The clock issue in quantum cosmology

\longrightarrow GR $=$ constrained system: lack of external time
\longrightarrow arbitrary degree of freedom: internal clock

Classical system $q_{i} \& p_{i}$
Constraint

Time parametrization invariance $\tau \rightarrow \tau^{\prime} \longrightarrow N\left(q_{i}, p_{i}, \tau\right)$

arbitrary non vanishing lapse function

$$
\mathrm{d} \tau=N \mathrm{~d} \tau^{\prime} \quad \Longrightarrow \quad \frac{\mathrm{d}}{\mathrm{~d} \tau^{\prime}} \mathcal{O}\left(q_{i}, p_{i}\right)=\{\mathcal{O}, N C\}_{\mathrm{P} . \mathrm{B}}
$$

hamiltonian $H=N C$

$$
C=0
$$

$$
\bar{t}=2 t+0.3
$$

$$
\bar{t}=t+q p \quad \bar{t}=t-\frac{3 q p}{3 p^{2}+1}
$$

Constrained system $C\left(\left\{q^{k}\right\},\left\{p_{k}\right\}\right)=H_{\text {tot }}\left(\left\{q^{k}\right\},\left\{p_{k}\right\}\right)=0$
Canonical transformation $\left(\left\{q^{k}\right\},\left\{p_{k}\right\}\right) \mapsto\left(\left\{Q^{a}\right\},\left\{P_{a}\right\}\right)$ $\longrightarrow \exists Q^{\alpha}$ such that $\left\{Q^{\alpha}, H_{\text {tot }}\right\}_{\text {P.B. }}=1=\frac{\mathrm{d} Q^{\alpha}}{\mathrm{d} t} ?$
Quantum system $\quad \hat{H}_{\text {tot }} \Psi \equiv \hat{C} \Psi\left(Q^{a}\right)=0$

defines clock
will become time

$$
\begin{gathered}
\longrightarrow \hat{C}=\hat{P}_{\alpha}+\hat{H}\left(P_{1}, \cdots, P_{\alpha-1}, P_{\alpha+1}, \cdots, P_{n},\left\{Q^{a}\right\}\right) \\
\hat{C} \Psi\left(Q^{a}\right)=0 \Longrightarrow \underset{\text { Schrödinger equation }}{\text { time-dependent }}
\end{gathered}
$$

A simple example

$$
\mathcal{S}=\frac{1}{2} \int\left(\frac{\dot{x}^{2}}{z}-z x^{2}-\frac{\dot{y}^{2}}{z}+z y^{2}\right) \mathrm{d} t
$$

First, redefine time: $\mathrm{d} \tau=z \mathrm{~d} t \longrightarrow \mathcal{S}=\frac{1}{2} \int\left[\left(\frac{\mathrm{~d} x}{\mathrm{~d} \tau}\right)^{2}-x^{2}-\left(\frac{\mathrm{d} y}{\tau}\right)^{2}+y^{2}\right] \mathrm{d} \tau$

Classical EOMs $\left\{\begin{array}{lr}\frac{\mathrm{d}^{2} x}{\mathrm{~d} \tau^{2}}=-x \\ \frac{\mathrm{~d}^{2} y}{\mathrm{~d} \tau^{2}}=-y & \text { 2 independent harmonic } \\ H_{\text {tot }}=H+H_{y}\end{array}\right.$

Canonical transformation $T=\arctan \left(\frac{p_{y}}{y}\right) \& P_{T}=-\frac{1}{2}\left(p_{y}^{2}+y^{2}\right)=H_{y}$

$$
\begin{aligned}
& \left\{T, P_{T}\right\}_{\text {P.B. }}=1 \\
& \left.\downarrow T, H_{\text {tot }}\right\}_{\text {P.B. }}=1 \longrightarrow \frac{\mathrm{~d} T}{\mathrm{~d} \tau}=1 \longrightarrow\left\{\begin{array}{l}
\frac{\mathrm{d} x}{\mathrm{~d} T}=p_{x} \\
\frac{\mathrm{~d} p_{x}}{\mathrm{~d} T}=-x
\end{array}\right.
\end{aligned}
$$

$$
H_{\mathrm{tot}}=P_{T}+H \text { on shell } H_{\mathrm{tot}} \approx 0
$$

Quantization: x only! $\quad \hat{H}_{\text {tot }} \psi(x, T)=0 \quad \Longrightarrow \quad i \frac{\partial \psi}{\partial T}=\hat{H} \psi(x, T)$

$$
\begin{aligned}
& \& \int|\psi(x, T)|^{2} \mathrm{~d} x=1 \\
& y \text { remains classical (clock) }
\end{aligned}
$$

Bianchi I case

$$
\mathrm{d} s^{2}=-N^{2} \mathrm{~d} \tau^{2}+\sum_{i=1}^{3} a_{i}^{2}\left(\mathrm{~d} x^{i}\right)^{2}
$$

Scale factors $\left\{\begin{array}{l}a_{1}=\mathrm{e}^{\beta_{0}+\beta_{+}+\sqrt{3} \beta_{-}} \\ a_{2}=\mathrm{e}^{\beta_{0}+\beta_{+}-\sqrt{3} \beta_{-}} \\ a_{3}=\mathrm{e}^{\beta_{0}-2 \beta_{+}}\end{array}\right.$
Volume $V \equiv a_{1} a_{2} a_{3}=\mathrm{e}^{3 \beta_{0}}$

Action

$$
\downarrow_{\mathrm{d} \beta_{0}}=\frac{1}{3} \mathrm{e}^{-3 \beta_{0}} \mathrm{~d} V
$$

$$
\mathcal{S}=\int \mathrm{d} \tau(\underbrace{H}_{\frac{\mathrm{d} \theta}{\mathrm{~d} \tau} \underbrace{p_{0} \dot{\beta}_{0}+p_{+} \dot{\beta}_{+}+p_{-} \dot{\beta}_{-}}_{\substack{\text { canonical } \\ \text { one-form }}}-N C)}
$$

constraint

$$
C=\frac{\mathrm{e}^{-3 \beta_{0}}}{24}\left(-p_{0}^{2}+p_{+}^{2}+p_{-}^{2}\right)
$$

ensure canonical one-form remains canonical $\quad p_{V} \equiv \frac{\mathrm{e}^{-3 \beta_{0}}}{3} p_{0}$

constraint

$$
C=\frac{3 V}{8}\left(-p_{V}^{2}+\frac{p_{+}^{2}+p_{-}^{2}}{9 V^{2}}\right)
$$

cyclic variable $\dot{p}_{ \pm}=0 \quad$ set $p_{+}=k \cos \alpha$ and $p_{-}=k \sin \alpha$
$\longrightarrow \mathrm{d} \theta=p_{V} \mathrm{~d} V+p_{k} \mathrm{~d} k+p_{\alpha} \mathrm{d} \alpha+\underbrace{\mathrm{d}\left(k \cos \alpha \beta_{+}+k \sin \alpha \beta_{-}\right)}_{\rightarrow \text { exact... ignore! }}$

$$
\begin{aligned}
p_{k} & \equiv-\left(\cos \alpha \beta_{+}+\sin \alpha \beta_{-}\right) \\
p_{\alpha} & \equiv\left(k \sin \alpha \beta_{+}-k \cos \alpha \beta_{-}\right) \quad \text { neither } \alpha \text { nor } P_{\alpha} \text { in } H=N C
\end{aligned}
$$

the system reduces to $\left\{\begin{aligned} \mathrm{d} \theta & =p_{V} \mathrm{~d} V+p_{k} \mathrm{~d} k \\ C & =\frac{3 V}{8}\left(-p_{V}^{2}+\frac{k^{2}}{9 V^{2}}\right)\end{aligned}\right.$

Hamilton equations

$$
\begin{array}{rlr}
\dot{k} & =0 & \\
\dot{p}_{k} & =-N \frac{k}{12 V} & + \text { constraint } \\
\dot{V} & =-N \frac{3 V p_{V}}{4} & \frac{3 V}{8}\left(-p_{V}^{2}+\frac{k^{2}}{9 V^{2}}\right)=0 \\
\dot{p}_{V} & =-N\left[\frac{3}{8}\left(-p_{V}^{2}+\frac{k^{2}}{9 V^{2}}\right)-\frac{k^{2}}{12 V^{2}}\right] &
\end{array}
$$

\longrightarrow closed for V and p_{V}

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \tau}\left(9 \frac{p_{k}}{k}\right)=-\frac{3}{4} \frac{N}{V} \text { monotonically increasing function } \\
& \text { valid time choice } \tau=\frac{9 p_{k}}{k} \quad \Longrightarrow \quad N=-\frac{4}{3} V
\end{aligned}
$$

Solving directly in the action

$$
\mathcal{S}=\int \mathrm{d} \theta=\int \mathrm{d} \tau\left(p_{V} \dot{V}-\frac{V^{2} p_{V}^{2}}{2}\right)
$$

classical unconstrained one dimensional system

$$
\begin{array}{lll}
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(V p_{V}\right)=0 & \Longrightarrow & V p_{V}=V_{0} p_{V 0} \\
V=V_{0} \mathrm{e}^{\left(V p_{V}\right) \tau} & \text { and } & p_{V}=p_{V 0} \mathrm{e}^{-\left(V p_{V}\right) \cdot \tau}
\end{array}
$$

symmetric ordering choice

$$
H=V^{2} p_{V}^{2} \quad \mapsto \quad \hat{H}=\sqrt{V} \frac{1}{i} \partial_{V} \sqrt{V} \cdot \sqrt{V} \frac{1}{i} \partial_{V} \sqrt{V}
$$

coordinate transformation $V \mapsto Z=\ln V$
$\longrightarrow U \hat{H} U^{-1}=-\partial_{Z}^{2}, \quad$ and $\quad Z \in \mathbb{R}$

slow-gauge time

$$
\begin{aligned}
\mathrm{d} \theta= & \left(V p_{V}\right) \mathrm{d} V-\left(\frac{V^{2} p_{V}^{2}}{2}\right) \mathrm{d}\left(\frac{9 p_{k}}{k}+\frac{V-\ln V}{V p_{V}}\right) \\
& +\mathrm{d}\left(\frac{9 p_{k}}{2 k} V^{2} p_{V}^{2}+\frac{1}{2} V \ln V p_{V}-\frac{1}{2} V^{2} p_{V}\right)
\end{aligned}
$$

\longrightarrow Action $\mathcal{S}=\int \mathrm{d} \theta=\int \mathrm{d} \eta\left(V p_{V} \mathcal{V}^{\prime}-\frac{V^{2} p_{V}^{2}}{2}\right)$
new time variable $\eta \equiv \frac{9 p_{k}}{k}+\frac{V-\ln V}{V p_{V}}$

$$
\begin{gathered}
\pi_{V}=p_{V} V \\
\downarrow=\frac{1}{2} V^{2} p_{V}^{2}=\frac{1}{2} \pi_{V}^{2}
\end{gathered}
$$

freely moving particle...

$$
\left(V, \pi_{V}\right) \in \mathbb{R}_{+} \times \mathbb{R}
$$

on the half line

Quantization: a gaussian wave packet

$$
u(V, \eta)=\frac{\mathrm{e}^{-k^{2} / 4}}{\sqrt{1+4 i \eta}} \exp \left[-\frac{(V-i k / 2)^{2}}{1+4 i \eta}\right]
$$

implement boundary conditions to ensure self-adjointness

$$
\psi(V, \eta)=\frac{u\left(V+V_{0}, \eta\right)-u\left(-V+V_{0}, \eta\right)}{\left[\sqrt{\pi / 2}\left(1-\mathrm{e}^{-V_{0}^{2}-k^{2} / 2}\right)\right]^{1 / 2}}
$$

\longrightarrow solves the Schrödinger equation

$$
i \frac{\partial}{\partial \eta} \psi=-\triangle_{D} \psi
$$

Operator ordering ambiguity $\quad \pi_{V}^{2} \mapsto \hat{V}^{s} \hat{\pi}_{V} \hat{V}^{-2 s} \hat{\pi}_{V} \hat{V}^{s}$

$$
\longrightarrow \pi_{V}^{2} \mapsto \hat{\pi}_{V}^{2}+s \hat{V}^{-2}
$$

self-adjoint hamiltonian on the half-line $s>3 / 4$

Closed algebra of operators $\quad\left\{\begin{aligned} {[\hat{D}, \hat{H}] } & =2 i \hat{H}, \\ {\left[\hat{V}^{2}, \hat{D}\right] } & =2 i \hat{V}^{2},\end{aligned}\right.$

$$
\hat{D} \equiv \frac{1}{2}\left(\hat{V} \hat{\pi}_{V}+\hat{\pi}_{V} \hat{V}\right)
$$

\longrightarrow Heisenberg equations of motion

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} \eta} \hat{V}^{2}=-i\left[\hat{V}^{2}, \hat{H}\right]=4 \hat{D} \\
\frac{\mathrm{~d}}{\mathrm{~d} \eta} \hat{D}=-i[\hat{D}, \hat{H}]=2 \hat{H}
\end{gathered}
$$

Heisenberg equations of motion

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} \eta} \hat{V}^{2} & =-i\left[\hat{V}^{2}, \hat{H}\right]=4 \hat{D} \\
\frac{\mathrm{~d}}{\mathrm{~d} \eta} \hat{D} & =-i[\hat{D}, \hat{H}]=2 \hat{H}
\end{aligned}
$$

\longrightarrow solution as time-dependent operators

$$
\hat{D}(\eta)=2 \hat{H} \eta+\hat{D}(0) \longrightarrow \hat{V}^{2}=4 \hat{\eta}^{2}+4 \hat{D}(0) \eta+\hat{V}^{2}(0)
$$

expectation values follows similar equations...
\longrightarrow semi-classical variables

$$
\begin{aligned}
& \check{V}(t)=\sqrt{\left\langle\hat{V}^{2}(t)\right\rangle} \\
& \check{\pi}_{V}(t)=\frac{\langle\hat{D}(t)\rangle}{\check{V}(t)} \quad \longrightarrow \text { phase space solution }
\end{aligned} \quad \longrightarrow \text { n }
$$

$$
\begin{aligned}
\check{V}(t)= & \sqrt{4\langle\hat{H}\rangle t^{2}+V_{0}^{2}} \\
\check{\pi}_{V}(t)= & \frac{2\langle\hat{H}\rangle t}{\sqrt{4\langle\hat{H}\rangle t^{2}+V_{0}^{2}}} \\
&
\end{aligned}
$$

NOO SINCGOTEARII®

Changing the time variable $\eta^{\prime}=\eta^{\prime}\left(\eta, V, \pi_{V}\right)$
redefining the dynamical variables in the process

$$
\pi_{V}^{\prime}=\pi_{V} \quad \& \quad V^{\prime}=V+\pi_{V}\left(\eta^{\prime}-\eta\right) \quad \text { no change of range } \ldots
$$

change the canonical one-form

$$
\begin{gathered}
\mathrm{d} \theta=\pi_{V} \mathrm{~d} V-\frac{\pi_{V}^{2}}{2} \mathrm{~d} \eta=\pi_{V}^{\prime} \mathrm{d} V^{\prime}-\frac{\pi_{V}^{\prime 2}}{2} \mathrm{~d} \eta^{\prime}+\mathrm{d}\left[\left(\eta-\eta^{\prime}\right) \frac{\pi_{V}^{\prime 2}}{2}\right] \\
\longrightarrow \text { same system! }
\end{gathered}
$$

delay function $\Delta\left(V, \pi_{V}\right)=\eta^{\prime}-\eta \quad$ no dependency on time

Delay function

$$
\Delta=V \mathrm{e}^{-2\left|\pi_{V}\right| / 3} \sin \left(3 V \pi_{V}\right) /\left(10 \pi_{V}\right)
$$

Delay function
$\Delta=V\left(\pi_{V}-10^{-0.2} \pi_{V}^{3}+\pi_{V}^{5} / 10\right)$

Delay function
$\Delta=10^{-0.5} V \sin \left(2 \pi_{V}\right) / \pi_{V}$

Delay function
$\Delta=10^{-0.5}(V+1) \cos \left(3 \pi_{V}\right) / \pi_{V}$

Delay function (slow to fast)
[regular to singular]

$$
\Delta_{\text {slow } \rightarrow \text { fast }}=\frac{V-\ln V}{V p_{V}}
$$

Comparison between different delay functions

Sarye asymototice

Another way to obtain trajectories

Trajectory formulation to QM

Schrödinger equation

$$
i \frac{\partial \psi(\boldsymbol{x}, t)}{\partial t}=\left[-\frac{\boldsymbol{\nabla}^{2}}{2 m}+V(\boldsymbol{x})\right] \psi(\boldsymbol{x}, t)
$$

polar form of the wave function $\psi(\boldsymbol{x}, t)=A(\boldsymbol{x}, t) \mathrm{e}^{i S(\boldsymbol{x}, t)}$
modified Hamilton-Jacobi equation

$$
\begin{aligned}
& \text { conservation equation } \frac{\partial|\psi|^{2}}{\partial t}+\nabla \cdot\left(|\psi|^{2} \frac{\nabla S}{m}\right)=0 \\
& \text {-Jacobi equation } \\
& \begin{array}{ll}
\frac{\partial S}{\partial t}+\frac{(\nabla S)^{2}}{2 m}+V(\boldsymbol{x})+Q(\boldsymbol{x}, t)=0 & \boldsymbol{v}_{\boldsymbol{v}} \\
\hline
\end{array} \begin{array}{l}
\text { Quantum } \\
\text { potential }
\end{array} \equiv-\frac{1}{2 m} \frac{\nabla^{2} A}{A}
\end{aligned}
$$

Trajectory formulation to QM

$\exists \boldsymbol{x}(t)$ trajectory satisfying $\boldsymbol{p}=m \frac{\mathrm{~d} \boldsymbol{x}}{\mathrm{~d} t}=\frac{\Im \mathrm{m}\left(\Psi^{*} \nabla \Psi\right)}{|\Psi(\boldsymbol{x}, t)|^{2}}=\nabla S$

The trajectory formulation to QM
$\exists \boldsymbol{x}(t)$ trajectory satisfying $\quad \dot{\boldsymbol{p}}=m \frac{\mathrm{~d}^{2} \boldsymbol{x}}{\mathrm{~d} t^{2}}=-\nabla(V+Q) \quad Q=-\frac{1}{2 m} \frac{\nabla^{2} A}{A}$

Trajectory formulation to QM

$\exists \boldsymbol{x}(t)$ trajectory satisfying $\boldsymbol{p}=\nabla S$equivalent formulation for QM
probability distribution $\exists t ; \rho(\boldsymbol{x}, t)=|\psi(\boldsymbol{x}, t)|^{2}$ (attractor)
properties \square classical limit well defined $Q \rightarrow 0$
state dependentno need for external classical domain/observer!

- Internal clock formulation of QM \& QC
- Clock issue in QC can be approached by WDW and set constraints on time
- Asymptotics may solve the problem... perturbations???
- Other trajectory approach = same asymptotics
- Out-of-Quantum-Equilibrium modified power spectrum
\longrightarrow Planck best-fit... $\ell_{\text {NEW }} \simeq 2000 \mathrm{Mpc}$

