

Wave optics lensing of GW :

Theory and phenomenology of triple systems in the LISA band

Martin Pijnenburg – PhD student

In collaboration with Giulia Cusin, Cyril Pitrou, Jean-Philippe Uzan

arXiv:2404.07186, to appear in Phys. Rev. D

Outline

- 1. Introduction on triple systems & motivation
- 2. GW lensing, wave optics the *usual* way, quantum mechanical analogy
- 3. Our contribution : GW lensing considering the tensorial structure
- 4. Application to LISA-band triple systems

Hierarchical triple systems : GW190521 ?

Observational fact: 5 years ago ...

R. Abbott *et al.* (LIGO Scientific Collaboration and Virgo Collaboration), GW190521: A Binary Black Hole Merger with a Total Mass of 150 M_{\odot} Phys. Rev. Lett. **125**, 101102, 2020 Martin Pijnenburg - arXiv:2404.07186

Best fit masses:

 $m_1 = 85 M_{\odot},$
 $m_2 = 66 M_{\odot}$

(heavy !)

Hierarchical triple systems : GW190521 ?

Multiple possible scenarii, inconclusive analysis looking at GW signal **alone**

Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), 2020

One possibility: AGN disk migration traps Bellovary et al., 2016

Hierarchical triple systems : GW190521 ?

- 34 days later: AGN signal from the same location
- Suspect merger ocurred $\sim 350 r_S$ away from AGN : triple system

Considering **both GW & EM** signals, **evidence** for hierarchical triple:

marginal Ashton *et al.* (2021), Palmese *et al.* (2021)confident Graham *et al.* (2020), Morton *et al.* (2023)

Hierarchical triple systems : binary source & environment

GW signal expected to be impacted by 3rd body: Shapiro time delay, lensing, etc.

GW lensing: geometrical optics

Assume you have a notion of *ray* :

 \rightarrow Usual lensing picture (deflection angle, etc.)

GW lensing: geometrical optics

Conceptually similar to (my) undergraduate lab optics

But just as light, GW are ... waves !

Geometrical optics is just a high frequency approximation, which **breaks down** when

 $\lambda_{
m wave}\gtrsim$ (lens size) .

At the fundamental level, signal obeys a wave equation \rightarrow allows for diffraction, interference, ...

LISA has a best sensitivity around 10⁻³Hz.

At this frequency, low mass AGN with $M \sim \mathcal{O}(10^6) M_{\odot}$ fulfil the wave optics requirement

$$\lambda_{GW} > \frac{2GM}{c^2}$$

Equivalently: $\omega M < 1$ (natural units)

Start with:
$$ds^2 = (\bar{g}_{\mu\nu} + h_{\mu\nu})dx^{\mu}dx^{\nu}$$

E.g. gauge fixing :
$$h^{
u}_{\mu;\nu} = 0, \quad h^{\mu}_{\mu} = 0$$

 \rightarrow Wave equation :

$$h_{\mu\nu;\alpha}{}^{;\alpha} + 2\bar{R}_{\alpha\mu\beta\nu} h^{\alpha\beta} = 0, \text{ with } h_{\mu\nu;\alpha}{}^{;\alpha} \equiv \Box h_{\mu\nu}.$$

Reference work for phenomenology :

Wave effects in gravitational lensing of gravitational waves from chirping binaries

Ryuichi Takahashi (Kyoto U.), Takashi Nakamura (Kyoto U.) May, 2003

28 pages Published in: Astrophys.J. 595 (2003) 1039-1051 e-Print: astro-ph/0305055 [astro-ph] DOI: 10.1086/377430 View in: ADS Abstract Service

 \bigcirc reference search \bigcirc 253 citations

Usual process : **scalar** wave Ansatz

$$h_{\mu\nu} = \phi \cdot e_{\mu\nu}$$

Assume known behaviour for $e_{\mu\nu}$ (parallel transport)

Specify the lens background $\ ar{g}_{\mu
u}$ (in our case : Schwarzschild)

Decompose
$$\phi$$
 in multipoles: $\phi = e^{-i\omega t} \sum_{\ell} \frac{u_{\ell}(r)}{r (1 - 2M/r)^{1/2}} P_{\ell}(\cos(\theta))$

Differential equation is

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \omega^2 + \frac{4M\omega^2}{r} - \frac{\ell(\ell+1)}{r^2} + \frac{12M^2\omega^2}{r^2} + \mathcal{O}(r^{-3})\right]u_\ell = 0$$

Differential equation is

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \omega^2 + \frac{4M\omega^2}{r} - \frac{\ell(\ell+1)}{r^2} + \frac{12M^2\omega^2}{r^2} + \mathcal{O}(r^{-3})\right]u_\ell = 0$$

Schrödinger in 1/r Coulomb potential (Rutherford) : $\Psi = e^{-i\omega t} \sum_{\alpha} \frac{u_{\ell}}{r} P_{\ell}$

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \omega^2 - \frac{2\omega\gamma}{r} - \frac{\ell(\ell+1)}{r^2}\right]u_\ell = 0 \qquad , \ \gamma \propto \text{charges}$$

D

ifferential equation is

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \omega^2 + \frac{4M\omega^2}{r} - \frac{\ell(\ell+1)}{r^2} + \frac{12M^2\omega^2}{r^2} + \mathcal{O}(r^{-3})\right]u_\ell = 0$$

Schrödinger in 1/r Coulomb potential (Rutherford) : $\Psi = e^{-i\omega t} \sum_{\alpha} \frac{u_{\ell}}{r} P_{\ell}$

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \omega^2 - \frac{2\omega\gamma}{r} - \frac{\ell(\ell+1)}{r^2}\right]u_\ell = 0 \qquad , \ \gamma \propto \text{charges}$$

QM problem has exact solution:

$$\Psi \propto e^{-i\omega t} e^{ikz} {}_1F_1[-i\gamma, 1; ikr(1 - \cos(\theta))]$$

$$e^{i\omega t}\Psi \sim e^{ikz+i\gamma\ln kr(1-\cos(\theta))} - \frac{\tilde{\gamma}}{kr(1-\cos(\theta))} e^{ikr-i\gamma\ln kr(1-\cos(\theta))}$$

QM problem has exact solution:

$$\Psi \propto e^{-i\omega t} e^{ikz} {}_1F_1[-i\gamma, 1; ikr(1 - \cos(\theta))]$$

$$e^{i\omega t}\Psi \sim e^{ikz + i\gamma \ln kr(1 - \cos(\theta))} - \underbrace{\frac{\tilde{\gamma}}{kr(1 - \cos(\theta))}}_{\text{Plane wave}} e^{ikr - i\gamma \ln kr(1 - \cos(\theta))} \text{Spherical wave}$$

QM problem has exact solution:

$$\Psi \propto e^{-i\omega t} e^{ikz} {}_1F_1[-i\gamma, 1; ikr(1 - \cos(\theta))]$$

$$e^{i\omega t}\Psi \sim e^{ikz+i\gamma\ln kr(1-\cos(\theta))} - \frac{\tilde{\gamma}}{kr(1-\cos(\theta))} e^{ikr-i\gamma\ln kr(1-\cos(\theta))}$$
apparent divergence as $\theta \to 0$

QM problem has exact solution:

$$\Psi \propto e^{-i\omega t} e^{ikz} {}_1F_1[-i\gamma, 1; ikr(1 - \cos(\theta))]$$

$$e^{i\omega t}\Psi \sim e^{ikz + i\gamma \ln kr(1 - \cos(\theta))} - \frac{\tilde{\gamma}}{kr(1 - \cos(\theta))} e^{ikr - i\gamma \ln kr(1 - \cos(\theta))}$$

$$\log \text{ phase corrections}$$

Martin Pijnenburg - arXiv:2404.07186

If one doesn't know the exact solution :

Possible to solve the differential equation in multipole space, by

- Taking $kr \gg 1$ limit
- Requiring $\Psi \sim \Psi_{\text{plane}} + \Psi_{\text{spherical}}$

 \rightarrow **Correctly** recover $\Psi_{\text{spherical}} = -\frac{\tilde{\gamma}}{kr(1-\cos(\theta))} e^{ikr-i\gamma\ln kr(1-\cos(\theta))}$

Tensorial wave optics

Start again with : $ds^2 = (\bar{g}_{\mu\nu} + h_{\mu\nu})dx^{\mu}dx^{\nu}$

... but **avoid** extra assumption $\, h_{\mu
u} = \phi \cdot e_{\mu
u} \,$

Rather treat $h_{\mu\nu}$ with tools of black hole perturbation theory (BHPT),

to keep track of the full polarisation structure

Project $h_{\mu\nu}$ on basis functions on the sphere with even (Y) and odd (X) parity :

$$h_{rr} = \sum_{\ell m} h_{rr}^{\ell m} Y^{\ell m},$$

(radial)

$$h_{rA} = \sum_{\ell m} h_r^{\ell m} X_A^{\ell m} + j_r^{\ell m} Y_A^{\ell m}, \quad A = \theta, \phi, \qquad \text{(radial/angular)}$$

$$h_{AB} = \sum_{\ell m} h_2^{\ell m} X_{AB}^{\ell m} + r^2 G^{\ell m} Y_{AB}^{\ell m} + r^2 K^{\ell m} \Omega_{AB} Y^{\ell m}, \quad A, B = \theta, \phi,$$
 (angular)

From metric multipoles, define two **gauge invariant** master functions:

$$\Psi_{\text{odd}}^{\ell m} = \frac{2r}{(\ell-1)(\ell+2)} \left(\frac{\partial}{\partial r}\hat{h}_t^{\ell m} - \frac{\partial}{\partial t}\hat{h}_r^{\ell m} - \frac{2}{r}\hat{h}_t^{\ell m}\right)$$

$$r^{-1}\Psi_{\text{even}}^{\ell m} \propto \hat{K}^{\ell m} + \frac{2(1 - 2M/r)}{(\ell - 1)(\ell + 2) + 6M/r} \left((1 - 2M/r)\hat{h}_{rr}^{\ell m} - r\frac{\partial}{\partial r}\hat{K}^{\ell m} \right)$$

Martel, Poisson. Physical Review. D 71.10 (2005)

$$\Psi_{\bullet}^{\ell m}$$
obey Zerilli & Regge-Wheeler equations, $\bullet = \text{even, odd}$
 $\frac{\mathrm{d}^2 \Psi_{\bullet}}{\mathrm{d}r_*^2} + (\omega^2 - V_{\bullet}) \Psi_{\bullet} = 0, \quad \text{with } r_*(r) = r - 2M \ln\left(\frac{r}{2M} - 1\right)$

Schrödinger-like, for given potentials $V_{\bullet}(\ell, r, M)$

For the scattering problem : **Asymptotic** solutions for $\omega M \ll 1$ are known, expect $\Psi^{\ell m}_{\bullet} \sim \Psi^{\text{plane}}_{\bullet} + \Psi^{\text{sph}}_{\bullet}$

Poisson, Sasaki. Physical Review D 51.10 (1995)

Technicality : in principle, should sum

... diverges analytically & numerically

Tensorial wave optics : results

Recovering familiar features:

$$h_{+} - h_{+}^{\text{source}} - \left(-\frac{A_{\text{in}} 2M}{r} \frac{1 + \cos^{2} \theta}{2} \frac{1}{1 - \cos \theta} \left(\cos^{4} \left(\frac{\tilde{\theta}_{L}}{2} \right) \cos \left(\varphi - 2\phi \right) + \sin^{4} \left(\frac{\tilde{\theta}_{L}}{2} \right) \cos \left(\varphi + 2\phi \right) \right)$$

$$h_{\times} - h_{\times}^{\text{source}} - \left(-\frac{A_{\text{in}} 2M}{r} \frac{2M}{d_{\text{SL}}} \cos \theta \frac{1}{1 - \cos \theta} \left(\cos^{4} \left(\frac{\tilde{\theta}_{L}}{2} \right) \sin \left(\varphi - 2\phi \right) - \sin^{4} \left(\frac{\tilde{\theta}_{L}}{2} \right) \sin \left(\varphi + 2\phi \right) \right)$$

$$\text{Tr gauge projection of a quadrupole (cf source)}$$

Tensorial wave optics : results

Recovering familiar features:

$$h_{+} - h_{+}^{\text{source}} - \simeq \frac{A_{\text{in}}}{r} \frac{2M}{d_{\text{SL}}} + \cos^{2}\theta \frac{1}{1 - \cos\theta} \left(\cos^{4}\left(\frac{\tilde{\theta}_{L}}{2}\right) \cos\left(\varphi - 2\phi\right) + \sin^{4}\left(\frac{\tilde{\theta}_{L}}{2}\right) \cos\left(\varphi + 2\phi\right) \right)$$
$$h_{\times} - h_{\times}^{\text{source}} - \simeq \frac{A_{\text{in}}}{r} \frac{2M}{d_{\text{SL}}} \cos\theta \frac{1}{1 - \cos\theta} \left(\cos^{4}\left(\frac{\tilde{\theta}_{L}}{2}\right) \sin\left(\varphi - 2\phi\right) - \sin^{4}\left(\frac{\tilde{\theta}_{L}}{2}\right) \sin\left(\varphi + 2\phi\right) \right)$$

lensing features

Natural expected validity range: $kr(1 - \cos(\theta)) \gg 1$

Tensorial wave optics : results

Recovering familiar features:

$$h_{+} - h_{+}^{\text{source}} - \simeq \frac{A_{\text{in}}}{r} \frac{2M}{d_{\text{SL}}} \frac{1 + \cos^{2}\theta}{2} \frac{1}{1 - \cos\theta} \left(\cos^{4}\left(\frac{\tilde{\theta}_{L}}{2}\right) \cos\left(\varphi - 2\phi\right) + \sin^{4}\left(\frac{\tilde{\theta}_{L}}{2}\right) \cos\left(\varphi + 2\phi\right) \right)$$

$$h_{\times} - h_{\times}^{\text{source}} - \simeq \frac{A_{\text{in}}}{r} \frac{2M}{d_{\text{SL}}} \cos\theta \frac{1}{1 - \cos\theta} \left(\cos^{4}\left(\frac{\tilde{\theta}_{L}}{2}\right) \sin\left(\varphi - 2\phi\right) - \sin^{4}\left(\frac{\tilde{\theta}_{L}}{2}\right) \sin\left(\varphi + 2\phi\right) \right)$$

$$\varphi(r, t) \equiv \omega(t - d_{\text{SL}*} - r_{*}) - 2\tilde{\phi}_{L} + \Phi - 2M\omega\left(\ln\left(1 - \cos\theta\right) - 1 - \ln 2\right)$$

$$\log \text{ phase corrections}$$

Polarisation

Quantifying the signal polarisation content $\mathcal{V} \in [-1,1]$:

 $\mathcal{V} \equiv \frac{2 \text{Im}[\tilde{h}_{+}\tilde{h}_{\times}^{*}]}{|\tilde{h}_{+}|^{2} + |\tilde{h}_{\times}|^{2}} = V/I \quad \text{in terms of the Stokes parameters } V, I \,.$ $= \frac{|\tilde{h}^{(2)}|^{2} - |\tilde{h}^{(-2)}|^{2}}{|\tilde{h}^{(2)}|^{2} + |\tilde{h}^{(-2)}|^{2}}$

constant in geometric optics and scalar wave optics

in general **not constant** tensorial wave optics

Polarisation

Quantifying the signal polarisation content $\mathcal{V} \in [-1,1]$:

$$\mathcal{V} \equiv \frac{2 \mathrm{Im}[\tilde{h}_+ \tilde{h}_{\times}^*]}{|\tilde{h}_+|^2 + |\tilde{h}_{\times}|^2} = V/I$$

Wave optics lensing is **polarisation dependent**, e.g. :

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = M^2 \frac{\cos^8\left(\frac{\theta}{2}\right) + \sin^8\left(\frac{\theta}{2}\right)}{\sin^4\left(\frac{\theta}{2}\right)} + 2M^2 \sqrt{1 - \mathcal{V}_{\mathrm{incident}}^2} \cos^4\left(\frac{\theta}{2}\right) \cos(4\phi)$$

Tensorial wave optics : interference

Full wave solution is a **superposition** of lensed and original wave

Illustration:

- For simple circular orbits (disk migration traps)
- Considering a time-varying aligment (*explicitly ignoring other velocity dependent terms, e.g.* Doppler)

• LISA-band system : $\omega = 2\pi f = 2\pi \times 3 \times 10^{-3} \mathrm{Hz}$

• AGN lens mass:
$$M = 1.2 \times 10^6 M_{\odot} \implies \omega M = 0.11$$

- Source-Lens distance (disk migration trap) : $d_{SL} = 700M$
- GW190521-inspired heavy source : $m_1 = 120 M_\odot, m_2 = 71 M_\odot$

LISA detectable with SNR > 100 if at $z \sim 0.01$

Conclusions

- Wave optics is a regime in the range of future observations (LISA)
- **Triple systems** exhibit a rich dynamical lensing phenomenology
- In wave optics, GW lensing is a **fully tensorial** process:
 - Results go beyond a simple scalar amplification factor
 - The polarisation/helicity structure is not preserved by lensing