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Isolated black hole — Kerr-Newman geometry

3 parameters: mass M, charge @, angular momentum J.



Brief history: no-hair conjecture

No-hair conjecture /Ruffini and Wheeler, 1971/: black holes
formed by gravitational collapse are characterized by their mass,
angular momentum, and electric/magnetic charge. These are the
only parameters that can survive during the gravitational collapse,
all other information is lost. Black holes have no memory.




No-hair conjecture
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Uniqueness and no-hair theorems

o Uniqueness theorems /Israel, Robinson, Mazur/: All
electrovacuum holes are described by the Kerr-Newman
metrics. This confirms the conjecture.

o Are there other black holes, not described by Kerr-Newman
metrics ?

@ No-hair theorems /Bekenstein, 1972,.../ confirm the
conjecture for a number of special cases. Considering

Guw = Tw(®), DO>=UD),

where @ = scalar, spinor, massive vector field, etc., field, one
can show that the only black hole solutions are of the
Kerr-Newman type.

o However, if & = A is a pure Yang-Mills field then there are
new black holes without new charges:



First counterexample — black holes with Yang-Millas field

Non-Abelian Einstein-Yang-Mills black holes

M.S. VolkovandD.V. Gal'tsov
M. V. Lomonosov Moscow State University

(Submitted 7 September 1989)
Pis’ma Zh. Eksp. Teor. Fiz. 50, No. 7,312-315 (10 October 1989)

Solutions of the self-consistent system of Einstein-Yang-Mills equations with the
SU(2) group are derived to describe black holes with a non-Abelian structure of
gauge fields in the external region.

In the case of the electrovacuum, the most general family of solutions describing
spherically symmetric black holes is the two-parameter Reissner—-Nordstrom family,
which is characterized by a mass M and an electric charge Q. It was recently shown
for the Einstein-Yang-Mills systems of equations with the SU(2) group that a corre-
sponding assertion holds when the hold has a nonvanishing color-magnetic charge. In
this case the structure of the Yang-Mills hair is effectively Abelian.' In the present
letter we numerically construct a family of definitely non-Abelian solutions for Ein-
stein-Yang—Mills black holes in the case of zero magnetic charge. These solutions are
characterized by metrics which asymptotically approach the Schwarzschild metric far
from the horizon but are otherwise distinct from metrics of the Reissner—Nordstrom
family. In addition to the complete Schwarzschild metric, the family of solutions is
narametrized bv a diserete value of 7: the number of nodes of the ocance function For a



Zoo of hairy black holes

@ before 2000: Einstein-Yang-Mills black holes and their
generalizations — higher gauge groups, additional fields
(Higgs, dilaton), non-spherical solutions, stationary

generalizations, Skyrme black holes, Gauss-Bonnet, ...
/M.S.V.4Gal'tsov, Phys.Rep. 319 (1999) 1/

o after 2000: black holes via engineering the scalar field
potential, Horndeski black holes, spontaneously scalarized
black holes, black holes supporting spinning clouds of
ultralight bosons /Herdeiro-Radu/, hairy black holes in higher
dimensions, with stringy corrections, with massive gravitons
/Gervalle+M.S.V., 2020/, etc, ... /M.S.V., 1601.0823/

@ Which of these solutions are physical ? Unfortunately, one
cannot be too optimistic in this respect.



Present status of hairy black holes

@ Almost all known hairy solutions have been obtained either
within too much simplified models, or within exotic models
relying on a new physics = yet undiscovered particles and
fields. They are nice theoretically but their physical relevance
is not obvious.

o New physics (stringy effects, SUSY, GUT fields, Horndeski
fields, ultralight Dark Matter, massive gravitons, etc) may
exist. However, its existence has not been confirmed yet.

@ To be physically relevant, solutions should be obtained within
General Relativity (GR) + Standard Model (SM) of
fundamental interactions.

@ The SM contains the QCD sector with pure Yang-Mills
(gluons). Therefore, hairy black holes with Yang-Mills field
may have some relevance. However, classical configurations in
QCD are destroyed by large quantum corrections.



Electroweak black holes ?

@ The Standard Model contains also the electroweak (EW)
sector where the quantum corrections are not very large.
Therefore, it makes sense to study classical solutions of the
Einstein-Weinberg-Salam theory. This theory contains the
Einstein-Maxwell sector and hence describes the
Kerr-Newman black holes.

@ Does it describe something else 7

@ Only unphysical limits of the electroweak theory (vanishing
Weinberg angle) have been analyzed in the black hole
context, since in the full theory the spherical symmetry is lost
due to the electroweak condensation.



Electroweak condensation /Ambjorn-Olesen 1989/

o Constant homogeneous magnetic field B = (0,0, B) may exist
if only B < m?/e ~ 10%° Tesla.

o For m2/e < B < m?/e the vacuum structure changes leading
to the appearance of a condensate of massive W, Z, ® fields
forming a lattice of vortices. Anti-Lenz: the magnetic field is
maximal where the condensate is maximal.

o For B > m? /e the vortices disappear and the Higgs field
approaches zero — the full electroweak symmetry is restored.



Magnetic electroweak black hole /Maldacena 2020/

Radial magnetic field near the horizon where Higgs=0, followed by
electroweak “corona” made of vortex pieces, followed by radial magnetic

field in the far field where Higgs is constant = magnetic

Reissner-Nordstrom.

Nobody tried to confirm this



Preliminary analyzis in flat space

@ The electroweak corona should exist already in flat space
around a pointlike magnetic charge. Therefore, one may start
by studying condensation around the electroweak monopoles
in flat space.

o What is known about magnetic monopoles in general and
about magnetic monopoles in the electroweak theory ?

R.Gervalle and M.S.V.
Nucl.Phys. B 984 (2022) 115937;
Nucl.Phys. B 987 (2023) 116112



Pointlike magnetic monopole of Dirac in flat space



Dirac monopole /1930/

Pointlike magnetic charge in Maxwell electrodynamics:

PF

a = V-B = 4nP§(7) # 0, nevertheless B = Vx A+

B=
where the vector potential contais the Dirac string singularity,

which can be excluded by using two local gauges:

A_ = —P(cos? — 1)dy in northern hemisphere ¢ € [0,7/2+ ¢€)
A = —P(cos? + 1)dy in southern hemisphere 9 € (7/2 — €, 7]

These two gauges are related in the equatorial region,

A=A +d(2P¢), 4 =exp(i2ePp) i

hence 2eP=necZ =|P= Z—ne /P, n are called "magnetic charge"/

Energy is infinite.



Dirac monopole as a solenoid
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Dirac monopole in the electroweak theory

B=Ww3? = —g(cosﬁil)dgp, wl=w?=o. ¢:<0>

Electromagnetic field is a linear combination:

~!
S

1 T
(sin29WB+c0520W W3) = - B, B = 3 P=_—.

A = e 37 2e

|

The energy is infinite.

@ New result: Dirac monopole within the electroweak theory is
perturbatively unstable because the magnetic field is
unbounded for r — 0 and triggers the condensation.

/R.Gervalle and M.S.V. Nucl.Phys. B 984 (2022) 115937/



Non-Abelian monopoles in flat space



t'Hooft-Polyakov monopole /1974 /

Gauge fiel theory with a triplet Higgs field

1 , 1 A 2
L= PP = SD,0°D10? — 7 (6707 ®3)

with D,®° = 8,0 + €p ALOE.

A globally regular solution with a finite energy and magnetic
charge P = 1/e. Extremely popular.

Does not belong to the Standard Model, requires a new physics
(GUT) which may or may not exist.

In the electroweak theory there is other non-Abelian monopole:



Cho-Maison monopole /1996/

U(1) hypercharge field B = (1 — cosv)) dy as for the Dirac
monopole with n = 2, combined with non-Abelian
x"dxk sinZ e~
_ . - 2
Wi dxt = (1—f£(r)) €aik— 3 d = ¢(r) < —cosg )

=- non-linear superposition of Dirac and t’Hooft-Polyakov.

The total magnetic charge

1 cos? Oy, L sin® Oy,

P - - - u) + Psuge)

where Py (1) is pointlike and Psy(z) is distributed over the space.
The energy is infinite due to the pointlike charge.

New result: solution is perturbatively stable. Can be considered as
the pointlike Dirac monopole dressed with the condensate.

/R.Gervalle and M.S.V. Nucl.Phys. B 984 (2022) 115937/

New result: this solution can be generalized to |n| > 2:



Electroweak monopoles in flat space

New result: we constructed numerically monopoles with axial symmetry
up to |n| = 200. They contain a pointlike magnetic charge surrounded by
a condensate. The energy is infinite due to the central singularity.

/R.Gervalle and M.S.V. Nucl.Phys.B 987 (2023) 116112/

When gravity is taken into account, the singularity should be
shielded by a horizon and the energy will become finite.



Including gravity

/R.Gervalle and M.S.V.,
PRL 133 (2024) 171402/



Einstein-Weinberg-Salam theory

1
L=—R+ Lws
2K

1
4 g/2

Lws = —4;2 W2, W — BWBW—(D,@)TD%—% (chcb - 1)2
where Higgs is a complex doublet, ®% = (¢1, ¢2),

Wa, = W2 —0,W3 + e WoWS, By =09,B, — 9,B,,
D, = (@L—;BH— éraWiL) .

The length scale and mass scale are Ig =1.5 x 1071® cm and

mg =128.6 GeV. The couplings g’ =sinf, g = cosby,

4 2 2
g2 =078, g2=022, =188, K= — m; =5.30 x 10733,
o /\/Ipl

Electron charge e = gg’, a = 1/137. The Z, W, Higgs masses in
unites of mg are m, = 1/\@ m, = gm,, m, = \/Bm,.



Electromagnetic field (no unique definition if ® # const):

Nambu: eF,, = g2B,W — g’znawzw n, = (‘DTTa‘D)/((DT(D)

defines conserved electric and magnetic currents
AnJM =V, F",  4n gt =V, F",

magnetic charge

P = / T/ —gd3x.

t'Hooft:  Fu, = Fuu + €apen®DyunDyn® = 9,A, — 0,A,,

electric current

[4mJt =V, F™ |,

Using Nambu for magnetic charge and t'Hooft for electric current.



30 coupled equations to solve:

Weinberg-Salam:
V!Bl = g2 5 (61D,0 — (D,9) ),

DHW3, = g2 é (172D, — (D, ) r°0),
B

DD"® — 7 (¢Td — 1) =0,
Einstein:
Gw = kTw where Kk ~ 10733 s very small and
Tw = g12 W, W27+ ;QBW B,” + 2D, ®'D,y® + g Lws

=30 coupled equations. Vacuum solution:

8uv = N, B=W =0, @:(2)



Simplest solution: Reissner-Nordstrom

Same electroweak fields as for Dirac monopole,

B — W3:—gcosﬁdgp, W= w2 =0, ¢:((1)>,
B = & where P:i

3 , n €7 = magnetic charge
r 2e

Higgs field is in vacuum. Reissner-Nordstrom (RN) geometry

dr?
2 2 20192 | 2 2
ds* = —N(r)dt +N(r)+r (d¥? +sin® 9 dp?)
2M 2 2
N(r) = 1f7+%, QZZS—;, =M+ /M2 — Q2

Describes the r — oo limit of the hairy black holes.



Another simple solution: RN-de Sitter

n 0

B = —5 cosvdp, W =0, &= (O)
. P7
=  Higgs is in false vacuum, B = g273r,
2 2 dr2 5 5 . )

ds = —N(r) dtc + +r (dﬁ 4 sin ﬁd(p ) ,
N(r)
2M Q%2 A ) K3
N = 1-=—+ 5 -3 A==

In the extremal limit one has

Fex \ 2 A
N(r) = (1 — 7) (1 -3 [r? + 2rre + 3r§x]> :

r

— _ 2 2
- \/1 VIZSAS _ 210)+ 0(mo).

rex - 2/\

Describes the horizon geometry of extremal hairy black holes.



Perturbations around Reissner-Nordstrom

Buv = Guv + 08w, W, — Wi + W},
B,— B,+0B,, ®— ®+5id



Perturbations w,, = 5Wllt i /'5Wi fulfil

charged Proca: DFwy, + ieF ,ew’ = mv% w,, | whose solution is
wydxt = Z W (t, r, ¥, ),  /arbitrary ¢/,
me[—j,j]

W(t,r,0,0) = e“t(r)(sin9)y (tan g) e™? (d + isinddyp),

j = Inl/2=1 = |[j=0onlyif |n| = 2|

For |n| > 2 perturbations are not spherically symmetric. One has

(-5 [m- B Yo =ervt )

w2 >0is positive if ry, is large, w? < 0 if ry is small, for an
intermediate value r, = r2(n) there is a bound state 1(r) with
w? = 0, which describes the condensate which starts to appear.



Condensation threshold

2 4 6 10 20 40 100 200
r,?, 0.89 | 147 | 193 | 2.69 | 412 | 6.19 | 10.33 | 15.03
One has r2(n) = \/|n|/g for n>> 1 hence B(r?) ~ m2, which is

the condition for the condensate to appear. The condensate is

maximal at the horizon.

o= O
I

In |n|

P

|7z\¥2 —
In|=4 ---




Horizon distribution of vortices

The condensate field w = > ¢y wy, depends on coefficients ¢, and
produces a current J¥ = V,J(w?w#) tangent to the horizon. The
current sources second order corrections for the F, Z, ® fields
forming vortices orthogonal to the horizon. To determine the
coefficients ¢, we minimize the condensate energy. This amounts
to minimizing

(wl) = [ 1wl V=g dx.
by keeping fixed the norm

(Iwu|?) /]w#] V—gd®x = const.

This leads to the following prescription



Minimization procedure

Minimize with respect to ¢, and Lagrange multiplier i the function

Elan] = Ealew] + p(E2lan] = 1),

Eslcn] = Z A2j k41 Cm Ck € Ck1-m
kamvle[i.]m]]
2
Ez[Cm] = Z Aj,mcm
me[—jj]

with j ={n|/2 -1 and

LIy AN TG+ 1+m)(G+1—m)
Aim = N¥H (tan =) dy =2¥F! .
Ji A(“‘) (“2) r(2+2)

This gives values of ¢, determining positions of |n| — 2 vortices
homogeneously distributed over the horizon.



Lattice of vortices — corona

Figure: Left: the horizon distribution of the W-condensate w"w,,
corresponding to the global energy minimum for n = 10. The level lines
coincide with the electric current flow forming loops around 8 radial
vortices (dark spots) repelling each other and forming a lattice.

Right: the same when all vortices merge into two oppositely directed
multi-vortices with axial symmetry, ¢, ~ dogm, also a stationary point.



Non-perturbative analysis



Axial symmetry

ds? = —e®N(r)dt? + e 2VdP?,
d 2

di2 = | 0 12q92| 4 251 25in2 9dy?,
N(r)

W = T2(F1d1‘—|— ngﬁ) —g(T3F3—T1F4)dg0,

B = —(n/2)Ydp, o =/(p1,6).

Here U, K, S, F1, Fo, F3, F4, Y, ¢1, ¢ are 10 real functions of r, 1.
For non-extremal solutions N(r) = 1 — ry/r where ri labels the
solutions. We require Z; invariance under ¥ — 7 — 1, obtain 10
elliptic equations fer the 10 functions, and solve them numerically
with the FreeFem++ numericatl solver. We solve for values of the
gravity coupling 1071% < x < 1072 and then extrapolate to the
physical value x ~ 10733,



Hairy black holes

Same magnetic charge P = n/(2e) as for the RN black hole. We
start at rg = r%(n) when hairy solutions just start deviating from
RN and then we decrease r;. The massive hair appears and gets
longer as the horizon shrinks. When the field at the horizon
increases up to B(rg) = m?, the hair stops growing and a bubble
of symmetric phase appears. This bubble expands as the horizon
shrinks further till reaching the minimal value when it becomes

degenerate, surface gravity vanishes, but the area remain finite.

The black hole then becomes extremal.

~Inl/g ~Inl/g ~Inl/g




Charge contained in the hair

The total magnetic charge P of the black hole splits as
P :/ Py=gd®x, Py=P— P,
I>ryH

where P}, is contained in the hair outside the horizon and Py
remains inside. The hair charge P}, grows when the horizon shrinks
and in the extremal limit one has

P, =g?P=022P

hence 22% of the charge moves to the hair.



is determined from the asymptotic ggo = —1 + 2M/r + ... or from
the formula (same result)

kA
M=t 2 (ST TE) veed,
47 8T Jisry
surface gravity : kg = (1/2) N’e2U_K]r:rH
s
horizon area: Ay = 2771"%1/ eX+5-2Usin 9dv
0 Ir=ryg

This can be split as
M = My + My,

where the "horizon mass’ My is the mass of the RN black hole
with the same area Ay and with the charge Py. The rest is the
“hair mass” My, = M — Myg. When the horizon gets smaller, the
hair mass M, and hair charge P;, increase.



Horizon oblatness

The configurations are not spherical, one can define

horizon radius:  r, = +/Anu/(4m)

equatorial radius : iy = \/guu(tH, T/2)
polar radius : r}pl1 = (1/7) / V &ov(re, ) d
horizon oblateness: § = qu/rH

As the horizon radius decreases, the oblateness § stars from zero
and increases, then reaches a maximum, starts decreasing and
approaches zero in the extreme limit. The extremal horizon is
perfectly spherical, although the hair is squashed.



Quadrupole moments

Far away from the horizon the theory reduces to electrovacuum,

L=—R-- F JFHY.
2/-@
Writing the metric as
ds?> = —e?Vdt? + e 2VdP?,
di? = e®X(dr? +12dv?) + 12 sin 9 dp?
dualizing the magnetlc field, fF,k =e 2UVheys O°V | the
Ernst potential £ = eV — W2, Passing to the Weyl coordinates

where dI? = e2K(P2)(dp? + dz?) 4 p?dp? and considering the
asymptotic expansions at the symmetry axis of

-1 =%
5_1+5_kz>02k“’ q=- 1_|_g szJrl’

gravitational and magnetic quadrupoles are Q¢ = a», Qum = bo.



Non-extremal hairy solutions

0.25 T
k=10"3
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Figure: Parameters of non-extremal solutions with n = 10, k = 10-3.
The M and My curves are very close to each other. For riy — 0 they
become extremal, for ry — 2.66 they loose hair and become RN.



Extremal hairy solutions

They have zero surface gravity and are the most hairy. Depending
on the value of their charge parameter

K KN
Q:\[ZP:\/;e

there are two phases,

phase | : Q@ < Qx, phase Il : Q@ > Qx,
where
0.3 K3
Qr~——, N=—.
T gV 8

In phase | one has B(r;) > m? and the Higgs field vanishes at the
horizon. In phase Il one has B(r,) < m? and the Higgs field
deviates from zero at the horizon.



Extremal hairy solutions in phase | (n = 40)

Figure: The extremal solutions contain a small charged black hole inside a
bubble of symmetric phase, surrounded by a ring-shaped EW condensate
supporting 22 % of the total magnetic charge and two opposite
superconducting W-currents. This creates pieces of two magnetic
multi-vortices along the positive and negative z-directions. Farther away
the condensate disappears and the magnetic field becomes radial.



The Higgs vanishes at the horizon, the horizon geometry coincides
with the extreme RN-de Sitter with rex =~ g|Q|:

d 2
ds? = —Ndt? + -+ r2(dv? +sin? 0 dip?) (%)
ex 2 /\
N = <1—L) <1—[r2+2ffex+3re2x])

r 3
Far away from the horizon the geometry approaches RN described
by (*) with

2M 2

where (!!1)

Condensate lowers the mass.



Weak gravity

One has M = My + M. The hair carries 22% of the total charge,
Qn = 0.22 x Q, but hair mass M,, is very small due to the negative
Zeeman energy of the condensate interacting with the magnetic
field of the black hole, which shifts the W-mass as

m2 — m? —|B|~0

As a result, the mass-to-charge ratio for the hair is very small,

My, /|Qn| ~ v/k < 1. This can be viewed as a manifestation of the

weak gravity conjecture. The condensate is magnetically repelled

by the black hole stronger than attracted gravitationally, but it

cannot fly away because it has to follow the Yukawa law. Since the

hair mass is small, one has (if Q < Q)
rex | Q7

M= My + My = My = — +
2 2lex

~glQ|=1088|Q[ < Q|

Hairy black hole is less energetic than RN for which M > Q
= they cannot loose the hair and become RN.



Extrapolating toward x ~ 1073 if Q <« Q.
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Hairy black holes as magnetic monopoles

@ Most popular magnetic monopoles of t'"Hooft-Polyakov are
not described by the Standard Model. They are described by
GUT theories, which may or may not exist.

o Standard Model definitely exists and admits solutions
describing electroweak monopoles, but in flat space their
energy diverges because B ~ n/(2r?). This divergence might
be cured by renormalization, but so far nobody has confirmed
this.

o Gravity converts electroweak monopoles to hairy black holes
and renders their mass finite:

M=~ 5.1 |n| Mp1

Therefore, if there is no GUT physics, then these black holes
are the only magnetic monopoles which may exist in Nature.
They are heavy = should be observed at very high energies




Increasing the charge

@ As the charge Q  n increases, the hair length o< /| Q| grows
till macroscopic size of order 1 cm. The horizon size x | Q|
grows faster and the black hole absorbs the bubble.

o The horizon value B ~ 1/|Q| decreases and when B < m? the
Higgs deviates from zero at the horizon and the system enters
phase Il where the horizon becomes squashed. Near the
transition point one has (with s ~ 10.8 if x = 1072)

§ o (|Qf = Qi)

@ The fraction of the hair charge starts decreasing, the black
hole starts loosing hair, the geometry approaches extreme RN
and finally merges with it for

1.29

QmX:215Q = =
a; * 2g\/K

No hairy solutions for @ > Qmax.



Existence diagram

1.04 B 2.5 + phase I phase IT -
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Figure: The parameters of extremal solutions (right) and the existence
diagram for hairy solutions (left) for x = 1072; Qu = 1/(gV/A).



Maximally hairy extremal black hole

The black hole is maximally hairy around the phase transition
point when the fraction of the hair mass M}, /M is maximal. Then

|n| ~ 1.5 x 10%, rp ~ 1.37 cm,
the black hole mass has a planetary value,
M~ 2 x10% kg

of which =~ 11% is contained in the hair condensate.



Stability

According to Maldacena, the corona greatly enhances the Hawking
evaporation rate, hence non-extremal black holes should quickly
relax to the extremal state when their temperature is zero and

M < |Q|

Therefore, they cannot decay into RN black holes. However, axially
symmetric black holes can further reduce their mass by splitting
their hair into a hedgehog of vortices — “spreading the corona”.
Then the condensate energy achieves an absolute minimum and
the hairy black holes seem to become absolutely stable. The
corresponding solutions have not yet been obtained.

.




Phenomenology

Since they are described by well-tested theories, the hairy EW
black holes are expected to be physically relevant. They could
probably originate from primordial black holes. If the fluctuating
magnetic field in the ambiant EW plasma becomes at some
moment mostly orthogonal to the black hole horizon, or a piece of
a magnetic vortex gets attached to the horizon, this creates a flux
through the horizon = charge. This flux should be compensated by
the opposite flux created on other black hole(s). The oppositely
charged black holes will not necessarily annihilate, being pushed
apart by the cosmic expansion, or maybe they form bound systems
stablized by the scalar repulsion.

Such black holes should catalize the proton decay. They can be
detected when captured by a neutron star, causing a sudden
change of the star’s rotation period. Estimates based on proton
decay and Parker bound show that their contribution in Dark
Matter is small, unless they form neutral bound systems.



Conclusions

@ We constructed for the first time hairy black holes described
by well-tested theories, GR and SM. This suggests that they
may really exist in Nature. Perhaps they could have been
created by fluctuations in primordial electroweak plasma.

@ The can be as large as ~ 1 cm with approximately Terrestrial
mass M ~ 10% kg of which ~ 10% is stored in the
electroweak condensate hair.

@ They have M < |Q| hence they cannot get rid of the hair and
evolve into RN. When they spread their corona, they lower the
energy to an absolute minimum and seem to become
absolutely stable.

o If there is no GUT physics beyond the Standard Model, then
they should be the only magnetic monopoles which may exist.



