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In the dark
From small to large scales

Independent lines of evidence, on a range of scales, suggest
that there is either more matter than expected, dark matter,
or that gravity is different, modified gravity.

After all, the evidence for dark matter is inferred through
gravity, so second option is still a possibility.

Disregarding for now the intriguing, but controversial,
inconclusive case of discrepant velocities of widely separated
(kAU) binary stars, higher than expected in Newtonian
gravity, the first evidence is galactic.



In the dark
Galactic evidence of an unknown

Rather than a Keplerian decline in the outskirts, expected
when all matter has been encompassed,
v2/r = GM/r2 ⇒ v2 = GM/r , velocities of stars and gas in
disk galaxies are found to asymptote to a constant v → v∞.

Unexpected unless there is more mass, the dark matter halo
extending well beyond the disk, arranged such that M(r) → r ,
cancelling the dependence of v2 on r in the denominator, and
hence v2 → v2∞.



A dark matter halo profile

Since M(r) ∝
∫
dr r2ρ(r), then M(r) ∼ r implies there should

be a regime ρ(r) ∼ 1/r2 .

This is the case for the NFW profile

ρ(r) =
ρ0

(r/rs)(1 + r/rs)2

where for r ≪ rs , ρ ∼ 1/r and ρ ∼ 1/r3 for r ≫ rs so
ρ ∼ 1/r2 intermediately around r ∼ rs .

Hence, constant rotation curves should not extend
indefinitely.*



Clues
Galactic regularity: baryonic Tully-Fisher relation

It turns out that v∞
can be inferred from
just the baryonic mass
of the galaxy Mb,
implying a non-trivial
relation between the
baryonic and dark
matter distribution.

There is evidence that
v4∞ ∝ Mb.
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Figure: Power-law relation between v∞ and
Mb. Slope consistent with 4. (Lelli et al.,
2019)



The MOND proposal

This is natural in Modified Newtonian Dynamics (MOND).

There is another way to cancel the r in the denominator of
the gravitational acceleration GM/r2 = aobs = v2/r .

To take a square root!

So for very low accelerations aobs ∝
√
aN. For units to match,

must introduce a new scale a0 and have aobs =
√
a0aN.

a0 sets the scale of transition to MOND behaviour
(a0 ≈ 1.2 · 10−10m · s−2, a0 ∼ cH0).

Then aobs =
√
a0
√

GMb/r2 =
√
a0GMb/r = v2∞/r ⇒ v2∞ =√

a0GMb.

Squaring again find that v4∞ = (a0G )Mb, the baryonic
Tully-Fisher relation, with the constant now identified!



The non-relativistic field equation of MOND

What could the non-relativistic field equation look like?

∇2ΦN = ∇ · (∇ΦN) = −∇ · a⃗N = 4πGρb

In MOND, we must have that |a⃗obs| =
√
a0
√
|a⃗N| or squaring,

|a⃗obs|a⃗obs = a0a⃗N

But want acceleration to come from a potential, so
a⃗obs = −∇Φ, so substituting

−|∇Φ|∇Φ = a0a⃗N

into −∇ · a⃗N = 4πGρb

∇ · (|∇Φ|/a0∇Φ) = 4πGρb, a modified Poisson equation.

To interpolate between MOND and Newtonian behaviour we
introduce an interpolating function M so that generally

∇ · (M (|∇Φ|/a0)∇Φ) = 4πGρb

where M(x) → x for low accelerations x ≪ 1 and M(x) → 1
for x ≫ 1.



The Lagrangian

Is there a Lagrangian for

∇ ·
(
M

( |∇Φ|
a0

)
∇Φ

)
= 4πGρb?

Yes! The a-quadratic Lagrangian (AQUAL)

L = J
(
(∇Φ · ∇Φ) /a20

)
+ 4πGρbΦ

leads to the field equation when J ′(x2) = M(x), so in the
deep-MOND regime J (x) ∝ x3/2.

Then one can rest assured that equations of motion will be
consistent.



Another approach
QUMOND (Quasi-linear MOND)

Another approach is to invert

M(|a⃗obs|/a0)a⃗obs = a⃗N

so that
a⃗obs = ν(|a⃗N|/a0)a⃗N

and introduce a hierarchy such that ΦN satisfies the Poisson
equation

∇2ΦN = 4πGρb

and enforce a relation between ∇Φ and ∇ΦN, so that

∇ · (

a⃗obs︷︸︸︷
∇Φ ) = ∇ · (

a⃗obs︷ ︸︸ ︷
ν(|∇ΦN|)∇ΦN)︸ ︷︷ ︸

4πGρdyn

.

Amounts to solving Poisson equation twice.



v 4
∞ = a0GMb is not all. Diversity of rotation curves.
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Three v∞ twins
(Ghari, Famaey et
al., 2019).

Same v∞,
slow/fast
approach to v∞.

Rotation curve
tracks trend of
baryonic
contribution.



Further evidence
Additional galactic regularity: the Radial Acceleration Relation (RAR)

Observational support
for MOND most
clearly illustrated by
the Radial
Acceleration Relation.

Accelerations in
diverse galaxies land,
with small scatter, on
the same 1-1 relation
with the acceleration
expected from the
baryons alone, i.e.,
there is an algebraic
relation
gobs = ν(gN)gN.
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Figure: The baryons alone predict the
dynamics (153 LTG) (Lelli et al., 2019).



Recent underappreciated observations
Additional regularity: the radial acceleration relation (RAR) extended

Baryonic (stars+cold gas) radial acceleration log(gbar [h70 m/s2])
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Figure: RAR extended by weak lensing
agrees with deep MOND behaviour (slope
1/2) (Brouwer et al., 2021).

Recently, the Radial
Acceleration Relation
has been extended by
orders of magnitude
using weak lensing.

Signal of ∼ 105 lenses
(KiDS and GAMA) of
isolated late-type and
early-type galaxies,
stacked.

Consistent with
MOND behaviour
persisting!



Recent observations
The radial acceleration relation (RAR) extended and independently confirmed

Figure: Recently independently confirmed and made more robust by
Mistele et al (2023).



To larger scales: galaxy clusters

Relaxed galaxy clusters are modelled as gaseous spherically
symmetric configurations in hydrostatic equilibrium ∇p = ∇Φ.

Most of the baryonic mass is in X-ray emitting gas.

Potential can be derived using

velocity dispersion of galactic population (via virial theorem),
weak and strong gravitational lensing,
thermal Sunyaev-Zeldovich effect (distortion of CMB
proportional to line-of-sight integral of electron pressure,
pressure related to potential by hydrostatic eq.),
X-ray bremsstrahlung luminosity (depending on density and
temperature hence pressure, hence potential).



To larger scales: galaxy clusters
A Radial Acceleration Relation for galaxy clusters? Conflicts.

Combining tSZ
observations and
X-ray observations for
five nearby galaxy
clusters, Eckert et al.
have found a RAR for
galaxy clusters in
conflict with the
galactic RAR.

Accelerations mostly
larger than the
galactic RAR, hence
stronger gravity or
missing matter.
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Figure: The RAR of galaxy clusters (tSZ
and X-ray obs.) departs from the galactic
RAR (Eckert et al., 2022).



To larger scales: galaxy clusters
A Radial Acceleration Relation for galaxy clusters? Conflicts.

Using weak and
strong lensing data
Tian et al. have
found that MOND
could work, but with
a0 → 17a0 for galaxy
clusters alone*.
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from galactic RAR. (Tian et al.,
2020)



The cosmological challenge
Largest scales, cosmology, CMB and LSS

Best fit model is flat ΛCDM model with ΩCDM ≈ 5Ωb.
Tightly constrained dust-like (pressureless) behaviour: energy
density decays as a−3, negligible speed of sound cs .
Need relativistic theory to address.
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Relativistic extensions of Modified Newtonian Dynamics

Modifying the Poisson equation ∇2Φ = 4πGρb to have a
MOND limit was in retrospect straightforward:
∇ · (M (|∇Φ|/a0)∇Φ) = 4πGρb.

This theory is clearly non-relativistic: It has only spatial
derivatives ∇Φ. A relativistic theory would necessarily involve
time derivatives ∂Φ/∂t (symmetrically).

A natural starting point, to not spoil all the successes of
general relativity, is to have a metric theory, involving gµν .

Just as general relativity reduces to Newtonian gravity in the
weak-field, slow-motion (v ≪ c) regime, so we need to find a
theory whose weak-field, slow motion and low acceleration
regime a < a0 is governed by MOND.



Relativistic extensions of Modified Newtonian Dynamics

The road to general relativity was not a simple promotion of
gradients ∇ to four-derivatives ∂i and Laplacians ∇2 to
d’Alembertians □ = ηµν∂µ∂ν involving only the potential Φ.

In general relativity, the potential Φ is only the diagonal part
of the larger metric tensor gµν : g00 = −1 + 2Φ, gii = 1 + 2Φ.



Relativistic extensions of Modified Newtonian Dynamics
Enter Aether-Scalar-Tensor theory (AeST)

Motivated by the need to have a theory that

has a MOND limit for |∇Φ| < a0,
is GR-like for large accelerations |∇Φ| ≫ a0, strong
field-regime,
is consistent with observations of CMB anisotropies and of
large scale structure,
has gravitational waves that travel at light speed,



Relativistic extensions of Modified Newtonian Dynamics
Enter Aether-Scalar-Tensor theory (AeST)

Skordis and Z lośnik (2020) proposed such a theory (called
Aether-Scalar-Tensor theory) with a unit time-like vector field
Aµ, a scalar field ϕ, and a metric/tensor gµν .

Defining kinetic terms for the scalar field along the direction
of Aµ: Q ≡ Aµ∇µϕ, perpendicular to Aµ:
Y ≡ ∇µϕ∇νϕ(gµν + AµAν) and the projected vector field
gradient Jµ = Aα (∇αA

µ) it reads

16πG̃√−g
LAeST =R − KB

2
FµνFµν + 2(2 − KB)Jµ∇µϕ

− (2 − KB)Y − F(Y,Q) − λ(AµAµ + 1) (1)

where R is the Ricci scalar, KB is a coupling constant,
Fµν = ∇µAν −∇νAµ is the field strength, F is a free function
and λ is a Lagrange multipler that imposes the unit time-like
constraint: AµAµ = gµνA

µAν = −1.



Features of Aether-Scalar-Tensor theory

16πG̃√−g
LAeST =R − KB

2
FµνFµν + 2(2 − KB)Jµ∇µϕ

− (2 − KB)Y − F(Y,Q) − λ(AµAµ + 1) (2)

Function F of Q = Aµ∇µϕ (time, cosmology) and
Y = ∇µϕ∇νϕ(gµν + AµAν) (space) is undetermined.
Different choices lead to different behaviour.
MOND behaviour: 2

3a0
Y3/2 in F .

CDM-like behaviour: ∼ K2(Q−Q0)2 in F , minimum at a
non-zero value Q0.
Turns out evolution of Q (∼ ϕ̇) towards Q0 mimicks a
homogeneous dust component.
The (cosmological) DM density ΩCDM is set by the amount of
displacement of Q from Q0.



Static weak-field solutions of AeST

That was the full relativistic action.

To get the (quasi-)static weak-field equations, only quadratic
terms of the fields were kept in the action, after expanding the
metric as

ds2 = −(1 + 2Ψ)dt2 + (1 − 2Φ) γijdx
idx j ,

the scalar field about the minimum

ϕ = Q0t + φ,

time derivatives were neglected Φ̇ = Ψ̇ = φ̇ = 0, and
variational derivatives were taken.



Static weak-field solutions of AeST

The weak-field (tensor-scalar) equations are

∇2Φ −∇2χ + µ2Φ = 4πGρb (3)

∇ · (β (|∇χ|/a0)∇χ) = ∇2Φ (4)

where χ ≡ φ + Q0α (piece of ϕ = Q0t + φ, and α scalar part
of vector field), β is a function derived from Y-dependent part
of F and µ ≡ 2K2Q2

0/(2 − KB).
This can be reduced to one equation* in only the gravitational
potential

∇ · (M (|∇Φ|/a0)∇Φ) + µ2Φ︸︷︷︸
novel

= 4πGρb. (5)

Note that there is now explicit dependence of the potential:
the absolute value of the potential matters. Can distinguish
large from small potential. (Distinguish galaxy cluster from
galaxy?)



Subtleties of the reduction

In the Newtonian limit, the reduced equation

∇ · (M (|∇Φ|)∇Φ) + µ2Φ = 4πGρ

reduces to the Helmholtz equation

∇2Φ + µ2Φ = 4πGρ

which has oscillatory solutions.

In the Newtonian regime this is not a problem, but in the
MOND regime we have

∇ · (|∇Φ|∇Φ) + µ2Φ = 4πGρ

where it is a problem as a divergence (derivative) is acting on
|∇Φ| where ∇Φ → 0 (nodes of oscillation), where the
absolute value |X | is not differentiable for X → 0.



Subtleties of the reduction

In the spherically symmetric case this can be circumvented by
finding a Hamiltonian system (Φ(r), pΦ(r)) whose equations
of motion in configuration space reduce to

∇ · (M(|∇Φ|)Φ) + µ2Φ = 4πGρ

but whose equations of motion are solved entirely in
momentum space pΦ where, it turns out, there are no
singularities.
The desired solution Φ(r) is then obtained from pΦ.
A simpler resolution is not to reduce at all but stay with the
two-component case

∇2Φ −∇2χ + µ2Φ = 4πGρb (6)

∇· (β (|∇χ|/a0)∇χ) = ∇·(∇Φ) (7)

integrating the second equation

β (|∇χ|/a0)∇χ = ∇Φ.



AeST vacuum solutions: the field away from a source
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AeST vacuum solutions: the field away from a source
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AeST vacuum solutions: the field away from a source
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Static spherically symmetric weak-field solutions of AeST
Hydrostatic isothermal gas, a simplified galaxy cluster model
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The Radial Acceleration Relation of AeST for the
isothermal sphere
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A challenge to AeST

The RAR extended by weak lensing
is a potential challenge to AeST.
As AeST introduces a new length
scale 1/L = µ the MOND
behaviour should stop around a
scale depending on µ and
rM ∼

√
GM/a0.

The stacking used may wash out
the oscillations. Nodes of the
oscillations are affected by the
boundary conditions of the
potential.

Shifts in the potential may also
delay the onset of oscillatory
behaviour.
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Conclusions

There is observational support for MOND in galactic systems.
Galaxy clusters remain a challenge for MOND.
A recently proposed relativistic embedding of MOND,
Aether-Scalar-Tensor theory (AeST) has a ΛCDM limit and a
MOND regime.
MOND only appears in a limited range.
The weak-field effects explicitly depend on the potential which
may potentially distinguish galaxies from galaxy clusters.
The AeST Radial Acceleration Relation (RAR) for the
isothermal sphere shares similar behaviour to the observed
RAR for galaxy clusters, displaying a peak w.r.t. the MOND
RAR in a limited acceleration range.
However, a quantitative study with a realistic galaxy cluster
model is needed to fully address whether AeST can account
for the missing matter in galaxy clusters where (it is accepted
that) MOND fails.




