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Introduction and theory



Gravitational waves (GWs) from binary black holes

Stellar mass BBHs: LIGO/LISA sources of GWs.

Matched filtering: Model GWs to detect GWs.

Inspiral stage: the longest-lived stage of BBH evolution.

Quadrupole formula: h̄ij(t, x) ∼ 2G
r

d2Iij (tr )
dt2 ; Iij(t) =

∫
x ix jT 00(t, x)d3x

GWs are functions of black hole trajectories (focus of the talk).
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Binary black-holes and post-Newtonian theory

BBHs in inspiral stage are studied within post-Newtonian (PN)
approximation.

Applicable when black holes are far apart ( Gm
c2R

≪ 1) and move slowly
(v2/c2 ≪ 1).

Quantities are expanded in the small parameter v2/c2.

Example: schematic representation of Hamiltonian. Each factor of
1/c2 =⇒ one PN order.

H =(...) +
1

c2
(...) +

1

c3
(...) +

1

c4
(...)

0PN 1PN 1.5PN 2PN

0PN ∼ Newtonian order. The rest are relativistic corrections.
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Canonical transformations and Poisson brackets

Hamilton’s equations: q̇ = ∂H/∂p, ṗ = −∂H/∂q.

Canonical transformation: (q, p) ↔ (Q,P), such that
q̇ = ∂H/∂p, ṗ = −∂H/∂q =⇒ Q̇ = ∂H/∂P, Ṗ = −∂H/∂Q.

Canonical transformations preserve the form of Hamilton’s equations.

Hamilton’s equations =⇒ Ġ (q, p) = {G ,H}. [Goldstein]

Poisson bracket: {f , g} =
(
∂f
∂q

∂g
∂p − ∂f

∂p
∂g
∂q

)
.
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Canonical transformations preserve the form of Hamilton’s equations.
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Phase space of spinning PN BBHs

Sashwat Tanay (LUTH, Paris) Solution to binary black hole dynamics 7 / 32



2PN Hamiltonian

Starting point: 2PN Hamiltonian due to [Barker, O’Connell-1975]

With m = m1 +m2, µ := m1m2/m and n⃗ := R⃗/R, the 2PN
Hamiltonian becomes

H =

(
P2

2µ
− Gm1m2

R

)
+

1

c2
F1(R⃗, P⃗) +

1

c4
F2(R⃗, P⃗)

+
1

c3
F3
(
S⃗1.L⃗, S⃗2.L⃗

)
+

1

c4
F4
(
S⃗1.n⃗, S⃗2.n⃗, S⃗1.S⃗2

)
.

Evolution eqn. for G (R i ,P i ,S i
1, S

i
2): Ġ = {G ,H}. [Goldstein]

Lingo: {F ,G} = 0 ∼ F & G commute.

G is a constant ⇐⇒ {G ,H} = 0.
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Phase space of spinning PN BBHs

No. of phase space variables = 10

(since Ṡ1 = Ṡ2 = 0):
Rx ,Ry ,Rz , Px ,Py ,Pz , S1ϕ,S1z , S2ϕ,S2z
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Integrable systems and action-angles

Integrable system: canonical transformation (p⃗, q⃗) ↔ (J⃗ , θ⃗)

exists
such that H = H(J⃗ ) and {p⃗, q⃗}(θi + 2π) = {p⃗, q⃗}(θi ).
Ji = action ∼ p; θi = angle ∼ q [Goldstein]

Hamilton’s eqns. =⇒
J̇i = −∂H/∂θi = 0 =⇒ Ji stay constant

θ̇i = ∂H/∂Ji ≡ ωi (J⃗ ) =⇒ θi = ωi (J⃗ )t
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Liouville-Arnold theorem: 2n phase space variables & n commuting
constants of motion =⇒ integrability. [V. I. Arnold]

10 phase-space variables =⇒ 5 commuting constants for
integrability → 5 actions & 5 angles (5+5=10).

Line of approach: (1) prove integrability (2) find action-angles
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integrability → 5 actions & 5 angles (5+5=10).

Line of approach:

(1) prove integrability (2) find action-angles
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Integrable systems are nice (and rare) systems!

Integrable systems are not chaotic.

Chaos =⇒ no closed-form solutions; numerical solution also not
easy.

Action-angles → solution and frequencies.

Canonical perturbation theory: (J⃗old, θ⃗old, ω⃗old) → (J⃗new, θ⃗new, ω⃗new).
[Goldstein]

It’s nice to have integrable systems (they occur rarely), and extra nice to
have action-angles.
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1.5PN: solution to the BBH
system



Book: Gravity (Eric Poisson & Clifford Will), pg. 614



History of PN BBH action-angles and solutions

1609: Kepler equation l = u− e sin u = nt gives the Newtonian angle
variable.

1850-1920: Delaunay & Sommerfeld contributed to the Newtonian
action-angles.

1966: 1.5PN Hamiltonian given in Barker et. al (1966).

1976: 1PN solution given [R. Wagoner & C. Will]

1985: Elegant solution and angle variable at 1PN [T. Damour & N.

Deruelle]

1988: 2PN actions and solution (spin terms ignored; they enter at
1.5PN) [T. Damour & G. Schafer]

1999: 3PN action variables (spin terms ignored) [T. Damour et. al]

Several solutions exist for limiting cases (SA, e → 0,m1 = m2) up to
4PN [A. Gopakumar, N. Yunes, A. Klein, N. Cornish, K. Chatziioannou].
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Historical ties to Paris

Delaunay: director of Observatoire de Paris.

Damour: 1PN angle/solution and 2PN actions.
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History of PN BBH action-angles and solutions

1609: Kepler equation l = u− e sin u = nt gives the Newtonian angle
variable.

1850-1920: Delaunay & Sommerfeld contributed to the Newtonian
action-angles.

1966: 1.5PN Hamiltonian given in Barker et. al (1966). (55 years-old!)

1976: 1PN solution given [R. Wagoner & C. Will]

1985: Elegant solution and angle variable at 1PN [T. Damour & N.

Deruelle]

1988: 2PN actions and solution (spin terms ignored; they enter at
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RESULTS: action-angles & the solution at 1.5PN

Issue at 1.5PN: 1.5PN Hamiltonian Barker et. al (1966).

H =

(
P2

2µ
− Gm1m2

R

)
︸ ︷︷ ︸

Newtonian

+
1

c2
F1(R⃗, P⃗) +

1

c3
F2
(
R⃗, P⃗, S⃗1, S⃗2

)

Spins enter at 1.5PN → orbital-precession.

Result: We construct all 5 actions, angles & frequencies of the most
general 1.5PN BBH [2012.06586, 2110.15351, 2210.01605].

Result: We construct
{
R⃗, P⃗, S⃗1, S⃗2

}
as functions of (J⃗, θ⃗), thereby

constructing the solution (R⃗(t), P⃗(t), S⃗1(t), S⃗2(t)).
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RESULTS: action expressions

m ≡ m1 +m2, µ ≡ m1m2/m, ν ≡ µ/m, L⃗ ≡ R⃗ × P⃗,
σ1 ≡ (2 + 3m2/m1) , σ2 ≡ (2 + 3m1/m2) , S⃗eff ≡ σ1S⃗1 + σ2S⃗2,
J⃗ = L⃗+ S⃗1 + S⃗2.

J1 = L, J2 = J, J3 = Jz .

J4 = −J1+
Gmµ3/2
√
−2H

− G2mµ3

c2J 3
1
(S⃗eff ·L⃗)+ Gm

c2

(
3Gmµ2

J1
+

√
−H µ1/2(−15+ν)

4
√
2

)
.

J5 is very lengthy.
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Moment of truth
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Mathematical ingredients of the action-angle recipe

Used complex analysis, symplectic differential geometry & topology,
and invented unmeasurable, fictitious variables... [Goldstein, Jose-Saletan,

V. I. Arnold, Fasano-Marmi]

...albeit the problem statement is a simple coupled ODE system
Ġ = {G ,H}.

We have all seen this before (in spirit)!∫∞
0

dx
1+xn = π/n

sin(π/n)
Arfken-Weber 7 ed., Chapter 11 (Complex Variable Theory), Prob. 11.8.22

LHS and RHS are built out of reals, but we need complex variables
(extra variables) to prove it.

(In)famous example: Fermat’s last theorem [YouTube:Veritasium].
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Veritasium on p-adic numbers

Link: youtu.be/tRaq4aYPzCc
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2PN: two new constants of motion



History: are PN BBHs chaotic or integrable?

1966, 1975: 1.5PN and 2PN Hamiltonians worked out, respectively
[Barker, Gupta, O’Connell].

2001: 5 commuting constants were found by Damour at 1.5PN
[gr-qc:0103018] =⇒ 1.5PN integrable.

2000-2005: Heated debate on chaotic nature of 2PN BBHs (via
numerical simulations) and the detectability prospects of GWs

Chaos: N. Cornish, J. Levin

No chaos: F. Rasio, J. Schnittman, A. Gopakumar, C. Konigsdorffer

On the fence: A. Buonanno, M. Hartl

Simmering tension: “However the above analysis was strongly criticized in

Ref. [9]...” [gr-qc:0511009]

See the Introduction of [gr-qc:0511009] and [2012.06586] for details.
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RESULTS: integrable or non-integrable at 2PN?

Commuting constants of motion at 1.5PN: H1.5PN, J2, Jz , L
2, S⃗eff · L⃗.

Commuting constants of motion at 2PN: H2PN, Jz , J
2,��L

2 ,����
S⃗eff · L⃗ .

Result: found corrections to S⃗eff · L⃗ and L2 to render them
commuting constants =⇒ 2PN integrability [2012.06586].

They are not exact commuting constants; only in the PN perturbative
sense.

The non-exact nature of integrability =⇒ the tension b/w the two
camps.
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The fourth commuting constant of motion

With the definitions:

σ1 := (2 + 3m2/m1)

σ2 := (2 + 3m1/m2)

S⃗eff := σ1S⃗1 + σ2S⃗2

L⃗ := R⃗xP⃗

ϵ := 1/c2

The 4th commuting constant is

L̃2 ≡ L2 − ϵ

[
(m2 P iS1i +m1 P iS2i )

2

m2
1 m2

2

+
2G (m2 R iS1i +m1 R iS2i )

2

(m1 +m2)(R iRi )3/2

+

(
P iPi

m1m2
− 2Gm1m2

(m1 +m2)
√

R iRi

)
S1aS

a
2

]
.
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And the 5th commuting constant is ...

˜⃗
Seff · L⃗ = S⃗eff · L⃗ +

ϵ (PaS1a)
2

m2
1

+
3m2ϵ (P

aS1a)
2

4m3
1

− 2Gm2
2ϵ (R

aS1a)
2

(m1 +m2) (RaRa)3/2

− 3Gm3
2ϵ (R

aS1a)
2

2m1 (m1 +m2) (RaRa)3/2
+

3ϵ (PaS1a) (P
aS2a)

4m2
1

+
3ϵ (PaS1a) (P

aS2a)

4m2
2

+
2ϵ (PaS1a) (P

aS2a)

m1m2
+

3m1ϵ (P
aS2a)

2

4m3
2

+
ϵ (PaS2a)

2

m2
2

− 3Gm2
1ϵ (R

aS1a) (R
aS2a)

2 (m1 +m2) (RaRa)3/2

− 4Gm1m2ϵ (R
aS1a) (R

aS2a)

(m1 +m2) (RaRa)3/2
− 3Gm2

2ϵ (R
aS1a) (R

aS2a)

2 (m1 +m2) (RaRa)3/2

− 2Gm2
1ϵ (R

aS2a)
2

(m1 +m2) (RaRa)3/2
− 3Gm3

1ϵ (R
aS2a)

2

2m2 (m1 +m2) (RaRa)3/2
+

1

2
(Sa

1S2a) .
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Conclusions and future avenues



Summary

For a BBH with arbitrary masses, spins and eccentricity,

1.5PN: Found all the actions and frequencies and constructed the
action-angle based solution.

2PN: Found 2 new (PN perturbative) constants of motion, thereby
establishing the integrable nature of the BBH.

Afterthoughts: (1) Nature is complex; elaborate math unavoidable
(2) Using classical mechanics to do GW research.
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Future avenues

Find 2PN action-angles using canonical pert. theory → extend QKP
elements (a, et , er , eϕ, n) to 2PN spinning systems.

Hint: (H1.5PN, J2, Jz , L2, S⃗eff · L⃗) → (H2PN, J2, Jz , L̃2,
˜

S⃗eff · L⃗)
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Hint: (H1.5PN, J2, Jz , L2, S⃗eff · L⃗) → (H2PN, J2, Jz , L̃2,
˜

S⃗eff · L⃗)

Add radiation reaction via
˙⃗
C = f⃗ (C⃗ ). C⃗ ≡ (H1.5PN, J2, Jz , L

2, S⃗eff · L⃗).
Hint: Spins don’t shrink. We may need only L̇2, Ḣ. But how to integrate?

Work out libration-rotation separatrix and resonances using
action-angles.
Hint: Use |∂C⃗/∂J⃗ | = 0 & |∂ω⃗/∂J⃗ | = 0. Gerosa-Kesden orbit averaged.

Compute action-angles for EMRI (extreme mass ratio inspirals).
Match PN and EMRI actions → re-present EOB.
EOB for non-spinning system used AAs; no AAs for spinning EOB.

Prove integrability at 3PN.
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Work out libration-rotation separatrix and resonances using
action-angles.
Hint: Use |∂C⃗/∂J⃗ | = 0 & |∂ω⃗/∂J⃗ | = 0. Gerosa-Kesden orbit averaged.

Compute action-angles for EMRI (extreme mass ratio inspirals).
Match PN and EMRI actions → re-present EOB.
EOB for non-spinning system used AAs; no AAs for spinning EOB.

Prove integrability at 3PN.

Sashwat Tanay (LUTH, Paris) Solution to binary black hole dynamics 31 / 32



Refs:

Papers: 2012.06586, 2110.15351,

2210.01605.

Lecture notes: 2206.05799

Mathematica package:
github.com/sashwattanay/BBH-PN-

Toolkit

YouTube video on the package

Contact: sashwat.tanay@obspm.fr

Thank you!
Questions?
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https://youtu.be/aoiCk5TtmvE?list=PL-UKo7OfOXE8jFG8CLSjn19s5ht02oX7w

