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Introduction and theory



Gravitational waves (GWs) from binary black holes

e Stellar mass BBHs: LIGO/LISA sources of GWs.
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Gravitational waves (GWs) from binary black holes

Stellar mass BBHs: LIGO/LISA sources of GWs.
Matched filtering: Model GWs to detect GWs.
Inspiral stage: the longest-lived stage of BBH evolution.

Quadrupole formula: h;(t,x) ~ &"Q’v‘g”; Li(t) = [ x'x TOO(t, x)d®x
y r dt
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Gravitational waves (GWs) from binary black holes

Stellar mass BBHs: LIGO/LISA sources of GWs.

Matched filtering: Model GWs to detect GWs.

Inspiral stage: the longest-lived stage of BBH evolution.
Quadrupole formula: h;(t,x) ~ %dzgftgt’); li(t) = [ x'xI TO(t,x)d®x

GWs are functions of black hole trajectories (focus of the talk).

e 6 6 o o

Image credit: www.eoportal.org
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Binary black-holes and post-Newtonian theory

e BBHs in inspiral stage are studied within post-Newtonian (PN)
approximation.
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Binary black-holes and post-Newtonian theory

e BBHs in inspiral stage are studied within post-Newtonian (PN)
approximation.

@ Applicable when black holes are far apart (% < 1) and move slowly
(v?/c? < 1).

e Quantities are expanded in the small parameter v2/c2.
o Example: schematic representation of Hamiltonian. Each factor of

1/c> = one PN order.

H=() () 50+ ()

OPN 1PN 15PN 2PN

@ OPN ~ Newtonian order. The rest are relativistic corrections.
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Canonical transformations and Poisson brackets

e Hamilton’s equations: ¢ = OH/dp, p = —0H/0q.
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Canonical transformations and Poisson brackets

e Hamilton’s equations: ¢ = OH/dp, p = —0H/0q.

Canonical transformation: (q, p) <> (Q, P), such that
g=0H/0p, p=—-0H/0qg = Q= 0H/OP, P=—0H/0Q.

@ Canonical transformations preserve the form of Hamilton's equations.

Hamilton’s equations = G(q,p) = {G,H}.  [Goldstein]

o Poisson bracket: {f, g} = (g—gg—i - %;%5)
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N
2PN Hamiltonian

Starting point: 2PN Hamiltonian due to [Barker, O’'Connell-1975]

With m = my + mp, p:= mimy/m and i := F_é/R the 2PN
Hamiltonian becomes

P2 Gmymo 1 R 1 oo
H=(—— —Fi(R,P —F(R,P
<2M R >+C2 1( ? )+C 2( Y )

1 fmooon 1 e e
+§F3 (51.L, 52L) + —F4 (51.0, Sp.n, Sq. 2) .

Evolution eqn. for G(R', P',Si,S}): G ={G,H}.  [Goldstein]
Lingo: {F,G} =0 ~ F & G commute.
G is a constant <= {G,H} =0.
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Phase space of spinning PN BBHs

No. of phase space variables = 10 (since S; = Sy = 0):
RXvRyaRZ7 PX7Py7'DZ7 51@35127 52@3522

-z Z

b4
5
> T

2
Re Re s 5

Sashwat Tanay (LUTH, Paris) Solution to binary black hole dynamics 9/32



Integrable systems and action-angles

o Integrable system: canonical transformation (7, §) < (.7.0)
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—
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such that H = H(7) and {7, G}(6; + 27) = {p, G} (6)).

Sashwat Tanay (LUTH, Paris) Solution to binary black hole dynamics 10/32



Integrable systems and action-angles

—

o Integrable system: canonical transformation (p, §) <» & (J,0) exists
such that H = H(7) and {p, G}(0; + 27) = {5, 3}(6)).
@ J; = action ~ p; f; = angle ~ g [Goldstein]

Sashwat Tanay (LUTH, Paris) Solution to binary black hole dynamics 10/32



Integrable systems and action-angles

—

o Integrable system: canonical transformation (p, §) <» & (J,0) exists
such that H = H(7) and {p, G}(0; + 27) = {5, 3}(6)).

@ J; = action ~ p; f; = angle ~ g [Goldstein]

@ Hamilton's eqns. =
T = —9H/00; =0 = J; stay constant
6; = OH/0T; = wi(T) — 6 =wi(J)t

Sashwat Tanay (LUTH, Paris) Solution to binary black hole dynamics 10 /32



Integrable systems and action-angles

—

o Integrable system: canonical transformation (7, §) <> (7. 0) exists

—.

such that H = H(J) and {p, q}(0; + 27) = {p, g} (0,).

@ J; = action ~ p; f; = angle ~ g [Goldstein]
@ Hamilton's eqns. =
T = —9H/00; =0 = J; stay constant
6; = OH/0T; = wi(T) — 6 =wi(J)t
6
T t
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Integrable systems and action-angles

—

o Integrable system: canonical transformation (7, §) <> (7, 0) exists

—.

such that H = H(J) and {p, g} (0; +27) = {p, G}(0;).
e J; = action ~ p; f; = angle ~ g [Goldstein]
@ Hamilton's eqns. =

T = —0H/00; =0 — J; stay constant

—.

é,-z@H/&j,-zw,-(f) — Q;ZCUi(j)t
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such that H = H(J) and {p, g} (0; +27) = {p, G}(0;).
e J; = action ~ p; f; = angle ~ g [Goldstein]
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constants of motion = integrability. [V. I. Arnold]

@ 10 phase-space variables = 5 commuting constants for
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Integrable systems and action-angles

—

o Integrable system: canonical transformation (7, §) <> (7, 0) exists

—.

such that H = H(J) and {p, g} (0; +27) = {p, G}(0;).
e J; = action ~ p; f; = angle ~ g [Goldstein]
@ Hamilton's eqns. =

T = —0H/00; =0 — J; stay constant

—.

0.,':8/‘//8\7,'5(4},'(‘7_') — H;ZCUi(j)t

@ Liouville-Arnold theorem: 2n phase space variables & n commuting
constants of motion = integrability. [V. I. Arnold]

@ 10 phase-space variables = 5 commuting constants for
integrability — 5 actions & 5 angles (5+5=10).

o Line of approach: (1) prove integrability (2) find action-angles
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Integrable systems are nice (and rare) systems!

@ Integrable systems are not chaotic.
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Integrable systems are nice (and rare) systems!

Integrable systems are not chaotic.

Chaos = no closed-form solutions; numerical solution also not
easy.

Action-angles — solution and frequencies.

—

Canonical perturbation theory: («7_;|d, §o|d,cvo|d) — (j,;ew, Onews Bnew )-
[Goldstein]

It's nice to have integrable systems (they occur rarely), and extra nice to
have action-angles.
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1.5PN: solution to the BBH
system



The calculations of this section were long and arduous, but as it turns out, they were merely
child’s play. At the time of writing, the gravitational waves for binary systems in circular
motion have been calculated all the way out to 3.5PN order, and this is a much, much
larger challenge. At 2pN order, for example, one finds not only the expected “standard”
corrections of order B*, but also tail contributions generated by the 0.5pN order terms.
At 2.5pN order one finds tails generated by the 1pN terms, 1PN corrections to the 1.5PN
tail terms, as well as standard 2.5PN terms. At 3pN order there are, in addition to the
standard terms, tails generated by the normal 1.5pN terms, 1.5pN corrections to the 1.5pN
tail terms, and completely new “tails of tails” terms: tails generated by the 1.5pN tails. These
formidable calculations have been carried out by a number of groups around the world, at
an enormous cost of labor and sweatl(perhaps even blood)l There was a strong motivation

Book: Gravity (Eric Poisson & Clifford Will), pg. 614



-
History of PN BBH action-angles and solutions

@ 1609: Kepler equation | = u — esin u = nt gives the Newtonian angle
variable.
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@ 1609: Kepler equation | = u — esin u = nt gives the Newtonian angle
variable.

o 1850-1920: Delaunay & Sommerfeld contributed to the Newtonian
action-angles.

@ 1966: 1.5PN Hamiltonian given in Barker et. al (1966).
@ 1976: 1PN solution given [R. Wagoner & C. Will]
@ 1985: Elegant solution and angle variable at 1PN [T. Damour & N.

Deruelle]

@ 1988: 2PN actions and solution (spin terms ignored; they enter at
1.5PN) [T. Damour & G. Schafer]

@ 1999: 3PN action variables (spin terms ignored) [T. Damour et. al]

@ Several solutions exist for limiting cases (Sa,e — 0, m; = my) up to
4PN [A. Gopakumar, N. Yunes, A. Klein, N. Cornish, K. Chatziioannou].
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Historical ties to Paris

@ Delaunay: director of Observatoire de Paris.

e Damour: 1PN angle/solution and 2PN actions.
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History of PN BBH action-angles and solutions

@ 1609: Kepler equation | = u — esin u = nt gives the Newtonian angle
variable.

o 1850-1920: Delaunay & Sommerfeld contributed to the Newtonian
action-angles.

@ 1966: 1.5PN Hamiltonian given in Barker et. al (1966). (55 years-old!)
@ 1976: 1PN solution given [R. Wagoner & C. Will]
@ 1985: Elegant solution and angle variable at 1PN [T. Damour & N.

Deruelle]

@ 1988: 2PN actions and solution (spin terms ignored; they enter at
1.5PN) [T. Damour & G. Schafer]

@ 1999: 3PN action variables (spin terms ignored) [T. Damour et. al]

@ Several solutions exist for limiting cases (Sa,e — 0, m; = my) up to
4PN [A. Gopakumar, N. Yunes, A. Klein, N. Cornish, K. Chatziioannou].
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-
RESULTS: action-angles & the solution at 1.5PN

o Issue at 1.5PN: 1.5PN Hamiltonian Barker et. al (1966).

P2 Gm1m2 1 - - 1 - 5 5 o
H= (5~ &™)+ 2ARP) + 3R (RP.S5.5)

R

J/

~
Newtonian

Spins enter at 1.5PN — orbital-precession.
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RESULTS: action-angles & the solution at 1.5PN

o Issue at 1.5PN: 1.5PN Hamiltonian Barker et. al (1966).

H— <P2 _ Gm1m2
2u R

A S
) +5 AR P)+ 5P (R, P, 51,52)

J/

~
Newtonian

Spins enter at 1.5PN — orbital-precession.

@ Result: We construct all 5 actions, angles & frequencies of the most
general 1.5PN BBH [2012.06586, 2110.15351, 2210.01605].

Sashwat Tanay (LUTH, Paris) Solution to binary black hole dynamics 18 /32



-
RESULTS: action-angles & the solution at 1.5PN

o Issue at 1.5PN: 1.5PN Hamiltonian Barker et. al (1966).
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) +5 AR P)+ 5P (R, P, 51,52)

J/

~
Newtonian

Spins enter at 1.5PN — orbital-precession.

@ Result: We construct all 5 actions, angles & frequencies of the most
general 1.5PN BBH [2012.06586, 2110.15351, 2210.01605].
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@ Result: We construct {F?, P, §1, §2} as functions of (Jﬁ7 0),
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-
RESULTS: action-angles & the solution at 1.5PN

o Issue at 1.5PN: 1.5PN Hamiltonian Barker et. al (1966).

P?  Gmimy 1 . 1 N

== - SRR P+ SR (RP.5,S)

(2,u - )+C2 1( )+C3 2 51,5
Newggnian

Spins enter at 1.5PN — orbital-precession.

@ Result: We construct all 5 actions, angles & frequencies of the most
general 1.5PN BBH [2012.06586, 2110.15351, 2210.01605].

— — —

R,P,S §2} as functions of (J,6), thereby
constructing the solution (R(t), P(t), S1(t), Sa(t)).

@ Result: We construct {
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RESULTS: action expressions

e m=my + my,

w=mimy/m,
01 = (243m2/m),

v=p/m, [=RxP,
=(24+3mi/ma), Sex = 0151 + 0252,
J=L+5+5.
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RESULTS: action expressions

=m + my, w=mimy/m, v=p/m, [=R
o1 E_}(2+3m2_/’m1), 025(2+3m1/m2), Seft = 0151 + 025,

o J1=1, Jo = J, T3 = J;.

2 _Gmd s T 2 | J=H u?(-15
o Jo= Tty — 5 (sefF.L)Jr%(stu R +y))_
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|
RESULTS: action expressions

om

42

=m + my, w=mimy/m, v=p/m, [=RxP
71 Eq(Q +3my/m1),  02=(2+3mi/mp), Sep = 0151+ 025
J=L+5 + 5.
o J1 =1L, T2 =J, Jz3 = J;.
3/2 3, = -, 2 G ,,1/2
° j4 = _j1+ Gm/_ N2H - 622? (SefF'L)"i‘% (36:91“ + H (= 15+V))

@ Js is very lengthy.

Sashwat Tanay (LUTH, Paris)

Solution to binary black hole dynamics

19/32



N
Moment of truth

4
0.05
3
2
; 1000 20| 3000
t,-o.os
305 310 150 200
-1 -0.10
-2
(a) (b)

—— Numerical —— Analytical

!
6000t

FIG. 2: Comparison of the analytical solutions with the numerical one. For a system with (my,mz) = (5/2,1) and the
initial values of the phase-space variables being & = (2, 2,2), P = (1/2, =1/2,1/3), S} =/ (0,1, 1), S = /e (1,
—3/10, 0). Subfigures (a) and (b) show evolution of z-component of K and Sy, respectively. We choose € = 0.003 for
(a) and € = 0.01 for (b). All this results in a Newtonian-orbital time period of Ty ~ 29 for both (a) and (b), and the

PN parameter ~ 0.0036 for (a) ~ 0.012 for (b) respectively. Throughout we keep G = 1.
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Mathematical ingredients of the action-angle recipe
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@ Used complex analysis, symplectic differential geometry & topology,
and invented unmeasurable, fictitious variables... [Goldstein, Jose-Saletan,
V. I. Arnold, Fasano-Marmi]

@ ...albeit the problem statement is a simple coupled ODE system

G ={G,H}.

@ We have all seen this before (in spirit)!
© dx __ 7/n
0 1+4x" = sin(w/n)
Arfken-Weber 7 ed., Chapter 11 (Complex Variable Theory), Prob. 11.8.22
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@ Used complex analysis, symplectic differential geometry & topology,
and invented unmeasurable, fictitious variables... [Goldstein, Jose-Saletan,
V. I. Arnold, Fasano-Marmi]

@ ...albeit the problem statement is a simple coupled ODE system

G ={G,H}.

@ We have all seen this before (in spirit)!
© dx __ 7/n
0 1+4x" = sin(w/n)
Arfken-Weber 7 ed., Chapter 11 (Complex Variable Theory), Prob. 11.8.22

@ LHS and RHS are built out of reals, but we need complex variables
(extra variables) to prove it.
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Mathematical ingredients of the action-angle recipe

@ Used complex analysis, symplectic differential geometry & topology,
and invented unmeasurable, fictitious variables... [Goldstein, Jose-Saletan,
V. I. Arnold, Fasano-Marmi]

@ ...albeit the problem statement is a simple coupled ODE system

G ={G,H}.

@ We have all seen this before (in spirit)!
© dx __ 7/n
0 1+4x" = sin(w/n)
Arfken-Weber 7 ed., Chapter 11 (Complex Variable Theory), Prob. 11.8.22

@ LHS and RHS are built out of reals, but we need complex variables
(extra variables) to prove it.

o (In)famous example: Fermat's last theorem [YouTube:Veritasium].
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Veritasium on p-adic numbers

Mathematicians Use Numbers Differently From The Rest of Us O »

Link: youtu.be/tRag4aYPzCc
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2PN: two new constants of motion



-
History: are PN BBHSs chaotic or integrable?

e 1966, 1975: 1.5PN and 2PN Hamiltonians worked out, respectively
[Barker, Gupta, O'Connell].
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e 1966, 1975: 1.5PN and 2PN Hamiltonians worked out, respectively
[Barker, Gupta, O'Connell].

@ 2001: 5 commuting constants were found by Damour at 1.5PN
[gr-qc:0103018] = 1.5PN integrable.

@ 2000-2005: Heated debate on chaotic nature of 2PN BBHs (via
numerical simulations) and the detectability prospects of GWs

@ Chaos: N. Cornish, J. Levin
@ No chaos: F. Rasio, J. Schnittman, A. Gopakumar, C. Konigsdorffer
° A. Buonanno, M. Hartl
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History: are PN BBHSs chaotic or integrable?

e 1966, 1975: 1.5PN and 2PN Hamiltonians worked out, respectively
[Barker, Gupta, O'Connell].

@ 2001: 5 commuting constants were found by Damour at 1.5PN
[gr-qc:0103018] = 1.5PN integrable.

@ 2000-2005: Heated debate on chaotic nature of 2PN BBHs (via
numerical simulations) and the detectability prospects of GWs

@ Chaos: N. Cornish, J. Levin
@ No chaos: F. Rasio, J. Schnittman, A. Gopakumar, C. Konigsdorffer
° A. Buonanno, M. Hartl

[ Simmering tension: “However the above analysis was strongly criticized in
Ref. [9]..." [gr-qc:0511009]
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-
History: are PN BBHSs chaotic or integrable?

e 1966, 1975: 1.5PN and 2PN Hamiltonians worked out, respectively
[Barker, Gupta, O'Connell].

@ 2001: 5 commuting constants were found by Damour at 1.5PN
[gr-qc:0103018] = 1.5PN integrable.

@ 2000-2005: Heated debate on chaotic nature of 2PN BBHs (via
numerical simulations) and the detectability prospects of GWs

@ Chaos: N. Cornish, J. Levin
@ No chaos: F. Rasio, J. Schnittman, A. Gopakumar, C. Konigsdorffer
° A. Buonanno, M. Hartl

[ Simmering tension: “However the above analysis was strongly criticized in
Ref. [9]..." [gr-qc:0511009]

@ See the Introduction of [gr-qc:0511009] and [2012.06586] for details.
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-
RESULTS: integrable or non-integrable at 2PN?

e Commuting constants of motion at 1.5PN: H1-5PN 2, |2, §eﬁ‘ L
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e Commuting constants of motion at 1.5PN: H1-5PN 2, |2, §eﬂ‘ L

e Commuting constants of motion at 2PN: H2PN,JZ,J2,1_/Z,M.

@ Result: found corrections to §eff . L and L2 to render them
commuting constants = 2PN integrability [2012.06586].

@ They are not exact commuting constants; only in the PN perturbative
sense.
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-
RESULTS: integrable or non-integrable at 2PN?

e Commuting constants of motion at 1.5PN: H1-5PN 2, |2, §eﬂ‘ L

e Commuting constants of motion at 2PN: H2PN,JZ,J2,1_/Z,M.

@ Result: found corrections to §eff . L and L2 to render them
commuting constants = 2PN integrability [2012.06586].

@ They are not exact commuting constants; only in the PN perturbative
sense.

@ The non-exact nature of integrability = the tension b/w the two
camps.
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The fourth commuting constant of motion

With the definitions:
o1:= (24 3my/m)
o3 = (24 3my/my)
Seft = 0151 + 0255
[ := RxP
€:=1/c?
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[ := RxP
€:=1/c?
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The fourth commuting constant of motion

With the definitions:
o1:= (24 3my/m)
o3 = (24 3my/my)
Seft = 0151 + 0255
[ := RxP
€:=1/c?

The 4th commuting constant is

2=12_, (mo PIS1; + my P'Sy;)? n 2G(my R'Sy; + my R'Sy;)?
o m% m% (m1 + mz)(RiR;)3/2

4 PiP; _ 2Gm1m2 S,.§3
mymy (ml—l—mg)\/R"R; el
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And the 5th commuting constant is ...
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And the 5th commuting constant is ...

€(P?S1.)?  3mae(P?S1,)? 2Gm3e (R?Sy,)?

St b= S b m3 i 4m3 - (m1 + mo) (:‘:\";“‘?5’)3/2
3Gm3e (R?S1,)? 3¢ (P?51.) (P?S,.)
2my (my + my) (RaR?)2 4m?
| 36(P?51) (P*S2a) | 2¢(P?51,) (P*S2) | 3mic (PS0)’
4m2 mymy 4m2
€(P?S,)°  3Gm2e (R?S1.) (R?Sy,)
mE 2(m + my) (R.R?)P
4Gmimye (R?S1,) (R?S2.)  3Gm2e (R?S1.) (R?S2,)
(ot m) (RR)YE 2(my + my) (RaR?)??

2Gm2e (R?S,,)? 3Gm3e (R?S,,)? L1 (55,2)
— — _ 2a) .
(my + mo) (RaR3)*2 2my (my + my) (R3R3)3/2 PR
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Conclusions and future avenues



Summary

For a BBH with arbitrary masses, spins and eccentricity,
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Summary

For a BBH with arbitrary masses, spins and eccentricity,

@ 1.5PN: Found all the actions and frequencies and constructed the
action-angle based solution.

@ 2PN: Found 2 new (PN perturbative) constants of motion, thereby
establishing the integrable nature of the BBH.

Afterthoughts: (1) Nature is complex; elaborate math unavoidable
(2) Using classical mechanics to do GW research.
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Future avenues

@ Find 2PN action-angles using canonical pert. theory — extend QKP
elements (a, e, e, e4, n) to 2PN spinning systems.

Hint: (HYSPN| 2, J, 12 S.q - [) — (H?PN, 2, J, 12, 5o - [)

1 1 h Set L h
ar——%<l_§(l/_7)c—2—2 —>,

2 c?
h h2[2
ef=1+2hl2—2(6—u)c—2—5(3—1/)C—2
o Seff -l h
+8(1+ hl?) T

n= (2 (14 2505 -)).
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@ Find 2PN action-angles using canonical pert. theory — extend QKP
elements (a, e, e, e4, n) to 2PN spinning systems.
Hint: (HYSPN| 2, J, 12 S, - [) — (H?PN, 2, J, 12, 5o - [)

e Add radiation reaction via C = f(C). C = (H**N 2, J,,12 S5 L).

Hint: Spins don't shrink. We may need only [27 H. But how to integrate?
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@ Find 2PN action-angles using canonical pert. theory — extend QKP
elements (a, e, e, e4, n) to 2PN spinning systems.
Hint: (HYSPN| 2, J, 12 S, - [) — (H?PN, 2, J, 12, 5o - [)

- -

o Add radiation reaction via C = f(C). C=(HYPN 2 J, 12 Sq-1L).

Hint: Spins don't shrink. We may need only [27 H. But how to integrate?

@ Work out libration-rotation separatrix and resonances using
action-angles.
Hint: Use |0C/0J| =0 & |05/8.7| = 0. Gerosa-Kesden orbit averaged.
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Future avenues

@ Find 2PN action-angles using canonical pert. theory — extend QKP
elements (a, e, e, e4, n) to 2PN spinning systems.
Hint: (HYSPN| 2, J, 12 S, - [) — (H?PN, 2, J, 12, 5o - [)

- -

o Add radiation reaction via C = f(C). C=(HYPN 2 J, 12 Sq-1L).

Hint: Spins don't shrink. We may need only [27 H. But how to integrate?

@ Work out libration-rotation separatrix and resonances using
action-angles.
Hint: Use |0C/0J| =0 & |05/8.7| = 0. Gerosa-Kesden orbit averaged.

e Compute action-angles for EMRI (extreme mass ratio inspirals).
Match PN and EMRI actions — re-present EOB.

EOB for non-spinning system used AAs; no AAs for spinning EOB.
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Future avenues

@ Find 2PN action-angles using canonical pert. theory — extend QKP
elements (a, e, e, e4, n) to 2PN spinning systems.
Hint: (HYSPN| 2, J, 12 S, - [) — (H?PN, 2, J, 12, 5o - [)

e Add radiation reaction via C = f(C). C = (H**N 2, J,,12 S5 L).

Hint: Spins don't shrink. We may need only [27 H. But how to integrate?

@ Work out libration-rotation separatrix and resonances using
action-angles.
Hint: Use |0C/0J| =0 & |05/8.7| = 0. Gerosa-Kesden orbit averaged.

e Compute action-angles for EMRI (extreme mass ratio inspirals).
Match PN and EMRI actions — re-present EOB.

EOB for non-spinning system used AAs; no AAs for spinning EOB.

@ Prove integrability at 3PN.
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Refs:

@ Papers: 2012.06586, 2110.15351,
2210.01605.

@ Lecture notes: 2206.05799

@ Mathematica package:
github.com /sashwattanay/BBH-PN-
Toolkit

° on the package

@ Contact: sashwat.tanay@obspm.fr

Thank you!
Questions?
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https://youtu.be/aoiCk5TtmvE?list=PL-UKo7OfOXE8jFG8CLSjn19s5ht02oX7w

