Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + \text{small } G_5$	Conclusions
0	0000000	00000	0000	00000	0

Large black-hole scalar charges induced by cosmology in Horndeski theories

Gilles Esposito-Farèse

GR€CO, Institut d'Astrophysique de Paris, 98bis boulevard Arago, F-75014 Paris

E. Babichev, GEF, I. Sawicki, L. Trombetta, arXiv:2504.07882 [gr-qc] \rightarrow Phys. Rev. D

IAP, June 30th, 2025

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

Introduction •	Horndeski theories	Cubic Galileon	Quintic Horndeski	$\begin{array}{c}G_2 + G_3 + \text{small } G_5\\ \circ \circ \circ \circ \circ \end{array}$	Conclusions O
Introdu	ction				

- No hair theorem in GR: BHs characterized by mass, spin, charge.
- Also true in standard scalar-tensor theories when $\dot{\varphi} = 0$, because of divergence at BH horizon $\Rightarrow \varphi = \text{const.}$
- No longer true when $\dot{\varphi} \neq 0$ (imposed by cosmology), but small scalar charges in standard scalar-tensor theories.
- Large scalar charges in some Galileon/Horndeski theories.
 ⇒ Are they consistent with observations?

Introduction ○	Horndeski theories	Cubic Galileon	Quintic Horndeski	$\begin{array}{c}G_2 + G_3 + \text{ small } G_5\\ \circ \circ \circ \circ \circ \end{array}$	Conclusions ○
Scalar-t	tensor theori	ies			

- Standard scalar kinetic term: $-(\partial_{\mu}\varphi)^2$ \Rightarrow Second order field equation: $\Box \varphi =$ source
- Decoupling limit of the Dvali-Gabadadze-Porrati brane model: cubic kinetic term $-(\partial_{\mu}\varphi)^2 \Box \varphi$

$$\Rightarrow \text{ Field equation:} \quad 2\nabla_{\mu} \left(\partial^{\mu} \varphi \Box \varphi\right) - \Box \left[(\partial_{\mu} \varphi)^2 \right] = \text{ source}$$

$$\Leftrightarrow \qquad 2(\Box\varphi)^2 + 2\partial^{\mu}\varphi\partial_{\mu}\Box\varphi - 2\nabla^{\nu}\left(\partial^{\mu}\varphi\nabla_{\nu}\partial_{\mu}\varphi\right) = \text{ source}$$

$$\Leftrightarrow 2(\Box \varphi)^2 + 2\partial^{\mu} \varphi \partial_{\mu} \Box \varphi - 2 (\nabla_{\mu} \partial_{\nu} \varphi)^2 - 2\partial^{\mu} \varphi \Box \partial_{\mu} \varphi = \text{source}$$

$$\Leftrightarrow \qquad 2(\Box \varphi)^2 - 2 \left(\nabla_{\mu} \partial_{\nu} \varphi \right)^2 - 2 R^{\mu \nu} \partial_{\mu} \varphi \partial_{\nu} \varphi \quad = \quad \text{source}$$

Nonlinear, but still second order! (\Rightarrow no Ostrogradski ghost)

• Simplest explanation of this "miracle":

$$-(\partial_{\mu}\varphi)^{2}\Box\varphi = \frac{1}{3}\varepsilon^{\mu\nu\rho\sigma}\varepsilon^{\alpha\beta}_{\ \rho\sigma}\partial_{\mu}\varphi\partial_{\alpha}\varphi\nabla_{\nu}\nabla_{\beta}\varphi + \text{tot. div.}$$

Introduction O	Horndeski theories	Cubic Galileon	Quintic Horndeski	$\begin{array}{c}G_2 + G_3 + \text{small } G_5\\ \circ \circ \circ \circ \circ \end{array}$	Conclusions O
Scalar-t	tensor theori	ies			

- Standard scalar kinetic term: $-(\partial_{\mu}\varphi)^2$ \Rightarrow Second order field equation: $\Box \varphi =$ source
- Decoupling limit of the Dvali-Gabadadze-Porrati brane model: cubic kinetic term $-(\partial_{\mu}\varphi)^2 \Box \varphi$

$$\Rightarrow \text{ Field equation:} \qquad 2\nabla_{\mu} \left(\partial^{\mu} \varphi \,\Box \varphi\right) - \Box \left[(\partial_{\mu} \varphi)^2 \right] = \text{ source}$$

$$\Leftrightarrow \qquad 2(\Box\varphi)^2 + 2\partial^{\mu}\varphi\partial_{\mu}\Box\varphi - 2\nabla^{\nu}\left(\partial^{\mu}\varphi\nabla_{\nu}\partial_{\mu}\varphi\right) = \text{ source}$$

$$\Leftrightarrow 2(\Box\varphi)^2 + 2\partial^{\mu}\varphi\partial_{\mu}\Box\varphi - 2(\nabla_{\mu}\partial_{\nu}\varphi)^2 - 2\partial^{\mu}\varphi\Box\partial_{\mu}\varphi = \text{source}$$

$$\Leftrightarrow \qquad 2(\Box \varphi)^2 - 2 \left(\nabla_{\mu} \partial_{\nu} \varphi \right)^2 - 2 R^{\mu \nu} \partial_{\mu} \varphi \partial_{\nu} \varphi = \text{ source}$$

Nonlinear, but still second order! (\Rightarrow no Ostrogradski ghost)

• Simplest explanation of this "miracle": $-(\partial_{\mu}\varphi)^{2}\Box\varphi = \frac{1}{3}\varepsilon^{\mu\nu\rho\sigma}\varepsilon^{\alpha\beta}_{\rho\sigma}\partial_{\mu}\varphi\partial_{\alpha}\varphi\nabla_{\nu}\nabla_{\beta}\varphi + \text{tot. div.}$

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + \text{small } G_5$	Conclusions
0	0000000	00000	0000	00000	0
Galileo	ns				

Notation:
$$\varphi_{\mu} \equiv \partial_{\mu} \varphi$$
, $\varphi_{\mu\nu} \equiv \nabla_{\mu} \nabla_{\nu} \varphi$

Galileons (in 4 dimen	nsions)	
$L_{(2,0)} \equiv \frac{1}{3!}$	$\varepsilon^{\mu u ho\sigma}\varepsilon^{lpha}_{ u ho\sigma}\varphi_{\mu}\varphi_{lpha}$	$=-arphi_{\mu}^{2}\equiv X,$
$L_{(3,0)} \equiv \frac{1}{2!}$	$\varepsilon^{\mu u ho\sigma}\varepsilon^{lphaeta}_{ ho\sigma}\varphi_{\mu}\varphi_{lpha}\varphi_{ ueta}$	$\sim -rac{3}{2}arphi_{\mu}^{2}\Box arphi,$
$L_{(4,0)}$ \equiv	$arepsilon^{\mu u ho\sigma}arepsilon^{lphaeta\gamma}_{\sigma}arphi_{\mu}arphi_{lpha}\;arphi_{ ueta}arphi_{ ho\gamma},$	
$L_{(5,0)}$ =	$arepsilon^{\mu u ho\sigma}arepsilon^{lphaeta\gamma}{}_{\sigma}arphi_{\mu}arphi_{lpha}arphi_{ uetaarphi}arphi_{ alpha}arphi_{\mu}arphi_{lpha}arphi_{ uetaarphi}arphi_{ ueta}arphi_{ ho\gamma}arphi_{\sigma}$	δ,
	uno z aleg	
$L_{(4,1)} \equiv$	$\varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\rho\gamma}{}_{\sigma} \varphi_{\mu} \varphi_{\alpha} \qquad R_{\nu\rho\beta\gamma}$	$=4 G^{\mu\nu} \varphi_{\mu} \varphi_{\nu},$
$egin{array}{ccc} L_{(4,1)}&\equiv\ L_{(5,1)}&\equiv \end{array}$	$ \begin{array}{l} \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma}{}_{\sigma} \varphi_{\mu} \varphi_{\alpha} & R_{\nu\rho\beta\gamma} \\ \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma\delta} \varphi_{\mu} \varphi_{\alpha} & \varphi_{\nu\beta} & R_{\rho\sigma\gamma\delta} \end{array} $	

[Cf. also Λ_{cosmo} , Einstein-Hilbert *R*, and Gauss-Bonnet $R^2_{\mu\nu\rho\sigma} - 4R^2_{\mu\nu} + R^2$]

Introduction O	Horndeski theories	Cubic Galileon	Quintic Horndeski	$\begin{array}{c}G_2 + G_3 + \text{ small } G_5\\ \circ \circ \circ \circ \circ \end{array}$	Conclusions O
Hornde	ski theories				

Notation:
$$\varphi_{\mu} \equiv \partial_{\mu} \varphi$$
, $\varphi_{\mu\nu} \equiv \nabla_{\mu} \nabla_{\nu} \varphi$, $X \equiv -\varphi_{\mu}^2$

Horndeski theories

$$\begin{split} L_{(2,0)} &\equiv \frac{1}{3!} f_2(\varphi, X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha}{}_{\nu\rho\sigma} \varphi_{\mu} \varphi_{\alpha}, \\ L_{(3,0)} &\equiv \frac{1}{2!} f_3(\varphi, X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta}{}_{\rho\sigma} \varphi_{\mu} \varphi_{\alpha} \varphi_{\nu\beta}, \\ L_{(4,0)} &\equiv f_4(\varphi, X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma}{}_{\sigma} \varphi_{\mu} \varphi_{\alpha} \varphi_{\nu\beta} \varphi_{\rho\gamma}, \\ L_{(5,0)} &\equiv f_5(\varphi, X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma\delta} \varphi_{\mu} \varphi_{\alpha} \varphi_{\nu\beta} \varphi_{\rho\gamma} \varphi_{\sigma\delta}, \\ L_{(4,1)} &\equiv s_4(\varphi, X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma}{}_{\sigma} \varphi_{\mu} \varphi_{\alpha} R_{\nu\rho\beta\gamma}, \\ L_{(5,1)} &\equiv s_5(\varphi, X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma\delta} \varphi_{\mu} \varphi_{\alpha} \varphi_{\nu\beta} R_{\rho\sigma\gamma\delta}. \end{split}$$

 $s_{4,5}$ related to $f_{3,4,5}$ in Horndeski theories, otherwise "beyond-Horndeski"

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + $ small G_5	Conclusions	
0	0000000	00000	0000	00000	0	
Horndeski theories						

Notation:
$$\varphi_{\mu} \equiv \partial_{\mu}\varphi$$
, $\varphi_{\mu\nu} \equiv \nabla_{\mu}\nabla_{\nu}\varphi$, $X \equiv -\varphi_{\mu}^2$

Shift-symmetric Horndeski theories

$$\begin{split} L_{(2,0)} &\equiv \frac{1}{3!} f_2(X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha}{}_{\nu\rho\sigma} \varphi_{\mu} \varphi_{\alpha}, \\ L_{(3,0)} &\equiv \frac{1}{2!} f_3(X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta}{}_{\rho\sigma} \varphi_{\mu} \varphi_{\alpha} \varphi_{\nu\beta}, \\ L_{(4,0)} &\equiv f_4(X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma}{}_{\sigma} \varphi_{\mu} \varphi_{\alpha} \varphi_{\nu\beta} \varphi_{\rho\gamma}, \\ L_{(5,0)} &\equiv f_5(X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma\delta} \varphi_{\mu} \varphi_{\alpha} \varphi_{\nu\beta} \varphi_{\rho\gamma} \varphi_{\sigma\delta}, \\ L_{(4,1)} &\equiv s_4(X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma\delta} \varphi_{\mu} \varphi_{\alpha} q_{\nu\beta} q_{\rho\gamma\delta}, \\ L_{(5,1)} &\equiv s_5(X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma\delta} \varphi_{\mu} \varphi_{\alpha} \varphi_{\nu\beta} q_{\rho\sigma\gamma\delta}. \end{split}$$

 $s_{4,5}$ related to $f_{4,5}$ in Horndeski theories, otherwise "beyond-Horndeski"

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

Introduction O	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + $ small G_5	Conclusions O
Hornde	ski theories				

Notation:
$$\varphi_{\mu} \equiv \partial_{\mu} \varphi$$
, $\varphi_{\mu\nu} \equiv \nabla_{\mu} \nabla_{\nu} \varphi$, $X \equiv -\varphi_{\mu}^2$

Subclass of shift-symmetric Horndeski theories

$$\begin{split} L_{(2,0)} &\equiv \frac{1}{3!} f_2(X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha}{}_{\nu\rho\sigma} \varphi_{\mu} \varphi_{\alpha}, \\ L_{(3,0)} &\equiv \frac{1}{2!} f_3(X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta}{}_{\rho\sigma} \varphi_{\mu} \varphi_{\alpha} \varphi_{\nu\beta}, \\ L_{(5,0)} &\equiv f_5(X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma\delta} \varphi_{\mu} \varphi_{\alpha} \varphi_{\nu\beta} \varphi_{\rho\gamma} \varphi_{\sigma\delta}, \end{split}$$

$$L_{(5,1)} \equiv s_5(X) \ \varepsilon^{\mu\nu\rho\sigma} \ \varepsilon^{\alpha\beta\gamma\delta} \ \varphi_{\mu} \ \varphi_{\alpha} \ \varphi_{\nu\beta} \ R_{\rho\sigma\gamma\delta}.$$

 s_5 related to f_5 in Horndeski theories, otherwise "beyond-Horndeski"

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + \text{small } G_5$	Conclusions	
0	000000	00000	0000	00000	0	
Horndeski theories						

Notation:
$$\varphi_{\mu} \equiv \partial_{\mu}\varphi$$
, $\varphi_{\mu\nu} \equiv \nabla_{\mu}\nabla_{\nu}\varphi$, $X \equiv -\varphi_{\mu}^2$

Subclass of shift-symmetric Horndeski theories

$$L_{(2,0)} \equiv \frac{1}{3!} \quad k_2 \quad \varepsilon^{\mu\nu\rho\sigma} \, \varepsilon^{\alpha}{}_{\nu\rho\sigma} \, \varphi_{\mu} \, \varphi_{\alpha} \qquad = k_2 X,$$

$$L_{(3,0)} \equiv \frac{2}{3} \quad \frac{k_3}{M^2} \quad \varepsilon^{\mu\nu\rho\sigma} \, \varepsilon^{\alpha\beta}{}_{\rho\sigma} \, \varphi_{\mu} \, \varphi_{\alpha} \, \varphi_{\nu\beta} \qquad \sim \frac{k_3}{M^2} \, X \, \Box \varphi,$$

$$L_{(5,0)} \equiv 0 \quad \times \quad \varepsilon^{\mu\nu\rho\sigma} \, \varepsilon^{\alpha\beta\gamma\delta} \, \varphi_{\mu} \, \varphi_{\alpha} \, \varphi_{\nu\beta} \, \varphi_{\rho\gamma} \, \varphi_{\sigma\delta} = 0,$$

$$L_{(5,1)} \equiv -\frac{1}{6} \quad \frac{k_5}{M^4} \quad \varepsilon^{\mu\nu\rho\sigma} \, \varepsilon^{\alpha\beta\gamma\delta} \, \varphi_{\mu} \, \varphi_{\alpha} \, \varphi_{\nu\beta} \, R_{\rho\sigma\gamma\delta}.$$

Introduction

Horndeski theories

Cubic Galileon

Quintic Horndeski

 $G_2 + G_3 +$ small G_5

Conclusions

Other writing of Horndeski theories

Equivalent to other notations used in the literature (still $X \equiv -\varphi_{\mu}^2$)

Shift-symmetric (beyond) Horndeski theories

$$\begin{split} L_{(2,0)} &= G_2(X), \\ L_{(3,0)} &= G_3(X) \Box \varphi + \text{tot. div.}, \\ L_{(4,0)} + L_{(4,1)} &= G_4(X)R + 2G'_4(X) \left[(\Box \varphi)^2 - \varphi_{\mu\nu} \varphi^{\mu\nu} \right] \\ &+ F_4(X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma}{}_{\sigma} \varphi_{\mu} \varphi_{\alpha} \varphi_{\nu\beta} \varphi_{\rho\gamma} + \text{tot. div.}, \\ L_{(5,0)} + L_{(5,1)} &= G_5(X) G^{\mu\nu} \varphi_{\mu\nu} \\ &- \frac{1}{3} G'_5(X) \left[(\Box \varphi)^3 - 3 \Box \varphi \varphi_{\mu\nu} \varphi^{\mu\nu} + 2 \varphi_{\mu\nu} \varphi^{\nu\rho} \varphi_{\rho}^{\mu} \right] \\ &+ F_5(X) \varepsilon^{\mu\nu\rho\sigma} \varepsilon^{\alpha\beta\gamma\delta} \varphi_{\mu} \varphi_{\alpha} \varphi_{\nu\beta} \varphi_{\rho\gamma} \varphi_{\sigma\delta} + \text{tot. div.} \end{split}$$

In this work:
$$G_2(X) = k_2 X$$
, $G_3(X) = \frac{k_3}{M^2} X$, $G_5(X) = \frac{k_5}{M^4} X$

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + \text{small } G_5$	Conclusions
0	0000000	00000	0000	00000	0

Considered subclass of Horndeski theories

Notation:
$$\varphi_{\mu} \equiv \partial_{\mu} \varphi$$
, $\varphi_{\mu\nu} \equiv \nabla_{\mu} \nabla_{\nu} \varphi$, $X \equiv -\varphi_{\mu}^2$

Subclass of shift-symmetric Horndeski theories

$$S = M_{\rm Pl}^2 \int \sqrt{-g} \, d^4 x \left\{ \frac{R}{2} - \Lambda_{\rm bare} + k_2 \, X + \frac{k_3}{M^2} X \, \Box \varphi + \frac{k_5}{M^4} X \, G^{\mu\nu} \varphi_{\mu\nu} - \frac{1}{3} \frac{k_5}{M^4} \left[(\Box \varphi)^3 - 3 \, \Box \varphi \, \varphi_{\mu\nu} \varphi^{\mu\nu} + 2 \, \varphi_{\mu\nu} \varphi^{\nu\rho} \varphi_{\rho}^{\ \mu} \right] \right\} + S_{\rm matter} [\text{matter fields}, e^{2\alpha\varphi} g_{\mu\nu}]$$

Shift symmetry if $\alpha = 0 \Rightarrow \exists$ conserved current: $J^{\mu} \equiv -\frac{1}{\sqrt{-g}} \frac{\delta S}{\delta \partial_{\mu} \varphi}$ Scalar field equation: $\nabla_{\mu} J^{\mu} = 0$ [or $-\alpha T_{\text{matter}}$]

Considered subclass of Horndeski theories

FLRW metric
$$ds^2 = -d\tau^2 + a(\tau)^2 \left(d\rho^2 + \rho^2 d\Omega^2 \right), \quad H \equiv \dot{a}/a$$

Cosmological field equations

$$3H^2 = \frac{\varepsilon}{M_{\text{Pl}}^2} + \Lambda_{\text{bare}} + k_2 \dot{\varphi}^2 - 6H \frac{k_3}{M^2} \dot{\varphi}^3 + \mathcal{O}(k_5),$$

$$-\dot{H} = \frac{\varepsilon + p}{2M_{\text{Pl}}^2} + k_2 \dot{\varphi}^2 - 3H \frac{k_3}{M^2} \dot{\varphi}^3 + \mathcal{O}(k_5),$$

$$\alpha_T \equiv \left(\frac{c_{\text{grav}}}{c}\right)^2 - 1 \approx 2H \frac{k_5}{M^4} \dot{\varphi}^3, \quad \text{GW detection: } |\alpha_T| < 10^{-15}$$

Considered subclass of Horndeski theories

FLRW metric
$$ds^2 = -d\tau^2 + a(\tau)^2 \left(d\rho^2 + \rho^2 d\Omega^2 \right), \quad H \equiv \dot{a}/a$$

Cosmological field equations

$$3H^{2} = \frac{\varepsilon}{M_{\rm Pl}^{2}} + \Lambda_{\rm bare} + k_{2}\dot{\varphi}^{2} - 6H\frac{k_{3}}{M^{2}}\dot{\varphi}^{3} + \mathcal{O}(k_{5}),$$

$$-\dot{H} = \frac{\varepsilon + p}{2M_{\rm Pl}^{2}} + k_{2}\dot{\varphi}^{2} - 3H\frac{k_{3}}{M^{2}}\dot{\varphi}^{3} + \mathcal{O}(k_{5}),$$

$$\nabla_{\mu}J^{\mu} = 0 \Rightarrow \frac{\partial_{\tau} (a^{3}J^{0})}{a^{3}} = 0 \quad [\text{or } \alpha(\varepsilon - 3p)]$$

with $\frac{J^{0}}{M_{\rm Pl}^{2}} = -2k_{2}\dot{\varphi} + \frac{6H}{M^{2}}\left[k_{3} - \left(\frac{H}{M}\right)^{2}k_{5}\right]\dot{\varphi}^{2}.$

Large *a* at late times
$$\Rightarrow J^0 \to 0$$
, and $\dot{\varphi} \neq 0$ if $k_2 < 0$
 $\Rightarrow \dot{\varphi}_{\text{cosmo}} = \frac{k_2 M^2}{3H} / \left[k_3 - \left(\frac{H}{M}\right)^2 k_5 \right]$

Introduction Horndeski theories Cubic Galileon **Quintic Horndeski** $G_2 + G_3 +$ small G_5 Conclusions 00000000 Considered subclass of Horndeski theories Schwarzschild-de Sitter metric $ds^2 = -f(r)dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega^2$ with $f(r) = 1 - \frac{r_S}{r} - (Hr)^2$. Assume $\varphi(t,r) = \dot{\varphi}_{BH}t + \phi(r)$. Test scalar field equation near black hole $\nabla_{\mu} J^{\mu} = 0 \Rightarrow \partial_r \left(r^2 J^r \right) = 0 \Rightarrow J^r = \frac{\text{const}}{r^2}$ with $\frac{J^r}{M_{\text{Pl}}^2} = A\varphi'^2 + B\varphi' + C$, $A \equiv \frac{f}{M^2} \left[\left(\frac{4f}{r} + f' \right) k_3 + \frac{3f - 1}{(Mr)^2} f' k_5 \right],$ $B \equiv 2fk_2$ $C \equiv -\left[k_3 + \frac{f-1}{(Mr)^2}k_5\right]\frac{f'\dot{\varphi}_{\rm BH}^2}{fM^2}.$

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + $ small G_5	Conclusions
0	0000000	00000	0000	00000	0
~ .					

Considered subclass of Horndeski theories

Test scalar field equation near black hole

$$A\varphi'^{2} + B\varphi' + C = \frac{\alpha_{BH}r_{S}}{r^{2}} \text{ (notation)},$$

therefore $\varphi' = \frac{-B \pm \sqrt{\Delta}}{2A},$
with $\Delta \equiv B^{2} - 4A\left(C - \frac{\alpha_{BH}r_{S}}{r^{2}}\right).$

Three results to keep in mind:

- $\dot{\varphi} \neq 0$ imposed by cosmology
- $\dot{\varphi}^2$ is a *source* for the BH scalar hair
- Δ ≥ 0 necessary for real φ' solution
 ⇒ any zero of Δ must be *double*

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

Introduction Horndeski theories Cubic Galileon Quintic Horndeski $G_2 + G_3 + small G_5$ Conclusions O = O O O

 $G_2 + G_3$: Solving for the double roots of Δ

Each double root of Δ imposes a relation between $\dot{\varphi}_{BH}$ and α_{BH} \Rightarrow Two double roots fix both of them!

Regularity of φ' solution

$$\begin{aligned} \dot{\varphi}_{\text{BH}} &= \dot{\varphi}_{\text{cosmo}} \times \left[1 + \frac{3}{2} \sqrt{3} Hr_{S} + \mathcal{O} \left(H^{2} r_{S}^{2} \right) \right], \\ \alpha_{\text{BH}} &= 3k_{3} \left(\frac{\dot{\varphi}_{\text{BH}}}{M} \right)^{2} \left[1 + \mathcal{O} \left(Hr_{S} \right) \right] \\ &= \frac{1}{3k_{3}} \left(\frac{k_{2}M}{H} \right)^{2} \left[1 + \mathcal{O} \left(Hr_{S} \right) \right]. \end{aligned}$$

- Consistent $\dot{\varphi}_{\rm BH} \approx \dot{\varphi}_{\rm cosmo}$
- $\alpha_{BH} = \mathcal{O}(1) \Rightarrow$ a priori large deviations from general relativity!

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + $ small G_5	Conclusions
0	0000000	0000	0000	00000	0

$G_2 + G_3$: Gravitational-wave emission

GW energy flux

$$F_{\text{GR}} \approx \frac{2}{5G} \left(\frac{r_S}{r_{AB}} \right)^5, \quad \text{[with } r_{AB} = \text{interbody distance]}$$

$$F_{\text{scalar}} = \left(F_{\text{scalar}}^{\text{dipole}} + F_{\text{scalar}}^{\text{quadrupole}} \right) \times (\text{Vainshtein screening factor}),$$

$$F_{\text{scalar}}^{\text{dipole}} \approx \frac{1}{48G|k_2|} \left(\frac{r_S}{r_{AB}} \right)^4 (\alpha_A - \alpha_B)^2,$$

$$F_{\text{scalar}}^{\text{quadrupole}} \approx \frac{1}{15G|k_2|} \left(\frac{r_S}{r_{AB}} \right)^5 \alpha_A \alpha_B.$$

Here,
$$\alpha_{\rm BH} \approx \frac{1}{3k_3} \left(\frac{k_2M}{H}\right)^2$$
 for all BHs \Rightarrow no dipole

 $G_2 + G_3$: Vainshtein screening

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

Introduction Horndeski theories

Cubic Galileon 0000

Quintic Horndeski

 $G_2 + G_3 +$ small G_5

Conclusions

$G_2 + G_3$: LIGO/Virgo/LISA?

Largest effects when self-acceleration $(M^4 = 3^3 k_3^2 H^4 / |k_2|^3)$

In spite of $\mathcal{O}(1)$ scalar charge $\alpha_{\rm BH}$, all experimental tests are passed, thanks to Vainshtein screening.

Introduction O	Horndeski theories	Cubic Galileon	Quintic Horndeski •୦୦୦	$\begin{array}{c}G_2 + G_3 + \text{small } G_5\\ \circ \circ \circ \circ \circ \end{array}$	Conclusions O
$G_{2} + G_{2}$	5				

Not possible to have self-acceleration in this model:

$$|\alpha_T| = \left| \left(\frac{c_{\text{grav}}}{c} \right)^2 - 1 \right| < 10^{-15} \implies \frac{M}{H} \lesssim 2 \times 10^{-2}$$

Regularity of φ' solution

$$\begin{split} \dot{\varphi}_{\text{BH}} &\approx \dot{\varphi}_{\text{cosmo}}, \\ \alpha_{\text{BH}} &= 2k_5 \left(\frac{2 \dot{\varphi}_{\text{BH}}}{3M^2 r_S}\right)^2 \left[1 + \mathcal{O}\left(H^2 r_S^2\right)\right] \\ &= \frac{2}{k_5} \left(\frac{2k_2 M^2}{9H^3 r_S}\right)^2 \left[1 + \mathcal{O}\left(H^2 r_S^2\right)\right], \\ r_{\text{double root}} &= \frac{3}{2} r_S \left[1 + \mathcal{O}\left(H^2 r_S^2\right)\right]. \end{split}$$

 \Rightarrow Huge scalar charge $\alpha_{BH} \propto 1/(Hr_S)^2$ in spite of negligible influence of φ for cosmological expansion

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndes
0	0000000	00000	0000

rndeski G₂ +

 $\substack{G_2 + G_3 + \text{ small } G_5 \\ \circ \circ \circ \circ \circ}$

Conclusions

$G_2 + G_5$: Accretion

Stress-energy tensor of φ : $T_t^r = -J_t^r \dot{\varphi}_{BH} = -M_{Pl}^2 \frac{\alpha_{BH} r_S}{r^2} \dot{\varphi}_{BH}$ \Rightarrow BH mass changes in characteristic time $\frac{1}{|\dot{\varphi}_{BH} \alpha_{BH}|} \propto \frac{1}{|\dot{\varphi}_{DH}^3|}$

 $\Rightarrow BH \text{ accretes local } \dot{\varphi}_{BH} \text{ until characteristic time } > BH's age (N.B.: This depends on theory parameter$ *M* $and on BH's mass <math>r_s$)

After scalar accretion

$$\begin{aligned} |\dot{\varphi}_{\mathrm{BH}}| &\gtrsim \left(\frac{9HM^4r_S^2}{8|k_5|}\right)^{1/3} \\ |\alpha_{\mathrm{BH}}| &\gtrsim 2\left(\frac{|k_5|H^2}{9M^4r_S^2}\right)^{1/3} \end{aligned}$$

 \Rightarrow Still large scalar charge $\alpha_{\rm BH} \propto (Hr_S)^{-2/3}$

Depends on $r_S \Rightarrow$ dipolar radiation $\propto (\alpha_A - \alpha_B)^2$

 $G_2 + G_3$: Vainshtein screening

Gilles Esposito-Farèse, IAP, CNRS

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

Introduction

Horndeski theories

Cubic Galileon

Quintic Horndeski

ki $G_2 + 0000$

 $\substack{G_2 + G_3 + \text{ small } G_5 \\ \circ \circ \circ \circ \circ}$

Conclusions O

$G_2 + G_5$: LIGO/Virgo/LISA

Large scalar accretion if
$$\frac{M}{H} \gtrsim \left(\frac{3^5 k_5^2}{2^3 |k_2|^3} H^2 r_s^2\right)^{1/8}$$

GW energy flux

$$rac{F^{
m scalar}}{F^{
m GR}} \gtrsim rac{5H}{72\Omega_{
m p}}rac{1}{\left(\Omega_{
m p}r_{S}
ight)^{8/3}}$$

$$\frac{F^{\text{GRm}}}{F^{\text{GR}}} \gtrsim 4 \times 10^{-16} \text{ for LIGO/Virgo}$$

$$\frac{1}{F^{\text{GR}}} \gtrsim 10^{-6} \text{ for LISA} > \text{ expected bounds}$$

- LIGO/Virgo tests passed although large $\alpha_{BH} \propto (Hr_S)^{-2/3}$.
- LISA should constrain $\frac{M}{H} < 5 \times 10^{-5} \Leftrightarrow |\alpha_T| < 3 \times 10^{-36}$, 10^{-21} tighter than GW speed bound!

Introduction O	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + $ small G_5 $\bullet \circ \circ \circ \circ$	Conclusions O
$G_2 + G$	G_3 + small G_3	5			

Assume k_2 and k_3 of $\mathcal{O}(1)$ but k_5 small: $(Hr_S)^2 \ll \left|\frac{k_5}{k_3}\right| \left(\frac{H}{M}\right)^2 \ll Hr_S$

• k_2 and k_3 dominate at large distances \Rightarrow self-acceleration

• k_5 dominates close to BH \Rightarrow large deviations from GR

Regularity of φ' solution for small accretion

$$\begin{aligned} \dot{\varphi}_{\text{BH}} &\approx \dot{\varphi}_{\text{cosmo}}, \\ \alpha_{\text{BH}} &\approx 2k_5 \left(\frac{2 \,\dot{\varphi}_{\text{BH}}}{3M^2 r_S}\right)^2 \approx 8k_5 \left(\frac{k_2}{9k_3 H r_S}\right)^2, \\ r_{\text{double root}} &\approx \frac{3}{2} r_S. \end{aligned}$$

 \Rightarrow Large scalar charge $\alpha_{\rm BH} \propto k_5/(Hr_S)^2$

 $G_2 + G_3 + \text{small } G_5$: Accretion

When accretion is large:

- BHs decouple from cosmological background produced by $G_2 + G_3$
- Their final state is generated by G_5 , which dominates locally
- \Rightarrow After accretion, same results as $G_2 + G_5$ model

 $G_2 + G_3$: Vainshtein screening

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

 $G_2 + G_5$: Vainshtein screening

Gilles Esposito-Farèse, IAP, CNRS

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + \text{small } G_5$	Conclusions
0	0000000	00000	0000	00000	0

$G_2 + G_3 +$ small G_5 : Vainshtein screening

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

Gilles Esposito-Farèse, IAP, CNRS

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + \text{small } G_5$	Conclusions
0	0000000	00000	0000	00000	0
<i>a</i> . <i>a</i>	11 0	TTOOM	7.	•	

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

Introduction O	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + $ small G_5 $\circ \circ \circ \bullet \circ$	Conclusions ○
α , α	11 0	TICOM	7• .	• ,	

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

$G_2 + G_3 +$ small G_5 : LIGO/Virgo constraints

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

$G_2 + G_3 +$ small G_5 : LIGO/Virgo constraints

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

$G_2 + G_3 +$ small G_5 : LIGO/Virgo constraints

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + \text{small } G_5$	Conclusions
0	0000000	00000	0000	00000	0

$G_2 + G_3 + \text{small } G_5$: LISA constraints

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

Introduction ○	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + $ small G_5 $\circ \circ \circ \circ \bullet$	Conclusions ○
<i>a</i> . <i>a</i>	. 11 0	TTOA	•		

$G_2 + G_3 + \text{small } G_5$: LISA constraints

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + \text{small } G_5$	Conclusions
0	0000000	00000	0000	00000	0
$G_2 + G$	G_3 + small G_3	5: LISA co	onstraints		

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + \text{small } G_5$	Conclusions
0	0000000	00000	0000	00000	0
$G_2 + G$	G_3 + small G_3	5: LISA co	onstraints		

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + \text{small } G_5$	Conclusions
0	0000000	00000	0000	00000	0
$G_2 + G$	G_3 + small G_3	5: LISA co	onstraints		

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + \text{small } G_5$	Conclusions
0	0000000	00000	0000	00000	0
$G_2 + G$	G_3 + small G_3	5: LISA co	onstraints		

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + \text{small } G_5$	Conclusions
0	0000000	00000	0000	00000	0
$G_2 + G$	G_3 + small G_3	5: LISA co	onstraints		

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + \text{small } G_5$	Conclusions	
0	0000000	00000	0000	00000	0	
C + C + cmall C + I ISA constraints						

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + \text{small } G_5$	Conclusions	
0	0000000	00000	0000	00000	0	
C + C + cmall C + I ISA constraints						

Introduction	Horndeski theories	Cubic Galileon	Quintic Horndeski	$G_2 + G_3 + \text{small } G_5$	Conclusions	
0	0000000	00000	0000	00000	0	
C + C + cmall C + I ISA constraints						

Introduction ○	Horndeski theories	Cubic Galileon	Quintic Horndeski	$\begin{array}{c}G_2+G_3+\text{ small }G_5\\00000\end{array}$	Conclusions •
0 1	•				

Conclusions

- Very interesting predictions of Horndeski theories: Generic self-tuning ($\Lambda_{\text{effective}} \ll \Lambda_{\text{bare}} \sim M_{\text{Planck}}^2$) or self-acceleration ($\Lambda_{\text{effective}} \neq 0$ with $\Lambda_{\text{bare}} = 0$), Vainshtein screening in the solar system, no ghosts.
- Accelerated expansion of Universe ⇒ large BH scalar charges in models containing G₃ and/or G₅ (≠ general relativity!)
- Cubic Galileon model $G_2 + G_3$ predicts $\mathcal{O}(1)$ scalar charges, but consistent with GW data thanks to Vainshtein screening.
- Quintic model $G_2 + G_5$: huge scalar charges $\propto 1/(Hr_S)^2 \Rightarrow$ strong scalar accretion. After this, scalar charge $\propto (Hr_S)^{-2/3}$. LISA should improve GW speed constraint (on α_T) by 10⁻²¹.
- Full model G₂ + G₃ + small G₅: BH physics dominated by G₂ + G₅, cosmology by G₂ + G₃ (self-acceleration possible).
 LISA should improve GW speed constraint by 10⁻¹⁶.
- To be further studied: stability, radial vs orthoradial sound velocities, precise scalar radiation when $\dot{\varphi} \neq 0$, time evolution of accretion?

Large black-hole scalar charges induced by cosmology • IAP, June 30th, 2025