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Outline of the talk 
• Why Primordial Black Holes (PBH) ?

• PBH generation mechanisms — single field inflation — inflection 
point models — PBH mass fraction 

• Interesting observational imprints of PBHs

• Induced secondary GWs from scalar perturbations

• Ultralight PBHs and imprints from Hawking evaporation

• Induced GWs and PTA results

• Imprints of memory burden effect of PBHs

• Conclusions
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Standard model of Cosmology

• The concordance model — 
Radiation + Baryons + Dark 
matter + Dark energy

• Statistically homogeneous 
and isotropic on very large 
scales
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Dark matter — observational evidence

Dark matter: A known 
Unknown !
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Why Primordial Black Holes (PBH) ?

• A novel and promising candidate for 
the cold dark matter 

• Abundant production in the early 
universe — e.g.  after inflation

• Non-baryonic, non-relativistic and 
nearly collisionless

• No new physics (beyond inflation) 
required !

• Interesting observational signatures 
e.g. secondary GWs, Hawking 
evaporation etc.



Rajeev Kumar Jain                                        IAP Paris 2025                                    PBH from inflation: DM and GW

PBH as DM — Current constraints 
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PBH as DM — Current constraints 

Primordial black holes and their gravitational-wave signatures
LISA Cosmology Working Group, Bagui, …RKJ… et al.,  

 Living Reviews in Relativity, 28 (2025) 1, 1 [arXiv:2310.19857]
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PBH formation from inflation — in a nutshell

Fig. credit: G. Franciolini
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PBH formation from inflation — in a nutshell

PBH formation from collapse of overdense fluctuations  
during radiation domination

Fig. credit: Front. Astron. Space Sci., 2021



Rajeev Kumar Jain                                        IAP Paris 2025                                    PBH from inflation: DM and GW

PBH formation from inflation — in a nutshell

|Rk|

Fig. credit: G. Franciolini

PR ⇠ 10�2
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PBH from inflation — inflection point models
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A single field inflection point scenario
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where ⇠ is also a constant. This potential can be recast in the form3

V (x) = V0

ax
2 + bx

4 + cx
6

(1 + dx2)2
, (2.4)

where x = �/v, V0 = Ṽ0(v/⇤)2, a = c2/2!, b = c4/4!(v/⇤)2, c = c6/6!(v/⇤)4 and d = ⇠v
2.

The parameter v is just a constant scaling factor. This is the potential of our scenario we
shall work with in this paper. Note that, this potential behaves as a quadratic potential
i.e. V (�) ⇠ �

2 for both the large and small field values (far away from the plateau region).
The flattening of the potential helps in two ways: first, it makes the potential renormalizable
at large field values and second, it flattens the potential su�ciently for large sales. Such
a behaviour of the potential leads to a nearly scale invariant power spectrum of curvature
perturbations which is consistent with the CMB observations on large scales. As we shall
discuss later, this potential also dynamically leads to a phase of slow roll violation (or ultra
slow roll) close to the plateau region and finally reheats the universe when the scalar field
rolls down to the true minima of the potential. The asymptotic behaviour of our potential
is very di↵erent from the flattened quartic polynomial potential which has recently been
discussed in the literature [60, 66, 67]. While our potential being roughly quadratic at large
scales leads to an observably large tensor-to-scalar ratio r, their potential being nearly flat
on large scale induces a very small r. Moreover, the quartic polynomial potential does not
possess an inversion symmetry i.e. the potential is not symmetric under � ! �� and thus,
one has to necessarily start the dynamics from positive values of the field �. This restriction
is relaxed in our scenario as our potential has an inversion symmetry and therefore, one can
start from both the positive or negative values of �. The inflaton potential of our scenario
is shown in Figure 1 for di↵erent choices of parameters corresponding to di↵erent values of
quasi-inflection points which are appropriate to obtain the desired inflationary dynamics.

Before we proceed further and discuss the details of the presence of inflection points
in our potential, let us briefly comment on the quartic polynomial potential that has re-
cently been used in the literature to produce PBHs from single field inflation. The quartic
polynomial potential recently proposed is given by [66]

U(x) = U0

ax
2 + bx

3 + cx
4

(1 + dx2)2
, (2.5)

wherein the denominator again provides appropriate flatness of the potential and could pos-
sibly be motivated from a non minimal coupling term in the Lagrangian. However, this
potential behaves as a constant potential at large values of x (or �) while behaves as a
quadratic potential at small values of x. For the case of our potential given in (2.4), we find
that in the limit of x � 1, the potential reduces to

V (x) ' V0c

d2
x
2
, (2.6)

while in the small x limit i.e. x ⌧ 1

V (x) ' V0a x
2
. (2.7)

3
Note that this potential that provides us the desired dynamics in our scenario can be considered as a

combination of the motivation from the EFT and the requirement for the needed flatness at the CMB scales

which also makes the potential renormalizable at large field values.

– 7 –

x � 1 : V (x) ' V0c

d2
x2

x ⌧ 1 : V (x) ' V0ax
2

Quadratic for both large 
& small field values

r ⇠ 0.05

x = �/v

N. Bhaumik & RKJ, JCAP 01, 037 (2020)
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Slow roll, ultra slow roll and all that…

which are given in rather simpler form as

a =
bx

2
�
2dx2 + 3

�

(d2x4 � 3)
, (2.10)

c =
b

x2(d2x4 � 3)
. (2.11)

First, by looking at the potential in (2.4), we can impose d > 0 to avoid any singularities in
the potential. Also, if the potential should be monotonously increasing for both large and
small field values, we find, from (2.6) and (2.7), that

a > 0 , c > 0. (2.12)

If we limit ourselves in the positive field regime of the potential i.e. x > 0, we notice that
in order to satisfy (2.10) and (2.11) together with (2.12), we arrive at the following two
conditions on b.

• x > (3/d2)1/4 leads to positive denominators and thus b > 0.

• x < (3/d2)1/4 leads to negative denominators and thus b < 0.

Therefore, in this model, we get two di↵erent kinds of inflection points for two choices of b,
b > 0 and b < 0 and they are separated by x ⇠ (3/d2)1/4. Since it is not possible to explore
the details of inflection points for this model analytically, we shall resort to a numerical scan
of the parameter space to obtain real inflection points. In fact, we have noticed that if we
first fix the value of the inflection point x0 and the values of b and d, one can then determine
a and c using (2.10) and (2.11). Although the potential has four independent parameters,
one only needs to fix two of them and the rest will be determined by the inflection point
conditions. We shall elaborate on the details of our numerical strategy about how to scan
the parameter space in Section 4.

2.2 Background evolution: slow roll, ultra slow roll and all that

After specifying the potential, we can now study the background inflationary dynamics that
arises from it. Using the number of e-folds, N(t) = ln (a(t)/ai), as the independent time
variable, the system is governed by the following Friedmann equations

H
2 =

V (�)

M
2

Pl
(3� ✏)

, (2.13)

dH

dN
= � H

2M2

Pl

✓
d�

dN

◆
2

, (2.14)

with the Klein-Gordon equation for � as

d
2
�

dN2
+ (3� ✏)

d�

dN
+

1

H2
V

0(�) = 0, (2.15)

where ✏ is the first Hubble slow roll parameter, given by

✏ = � Ḣ

H2
=

1

2M2

Pl

✓
d�

dN

◆
2

. (2.16)
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We also define the second slow roll parameter ⌘ as

⌘ = � �̈

H�̇
= ✏�

✓
d
2
�/dN

2

d�/dN

◆
(2.17)

Of course, only two out of the above three equations are independent. To solve these equations
completely, we need three initial conditions: �i, d�i/dN and Hi. Since the evolution of the
field � starts in the slow roll regime at large field part of the potential, after choosing an
appropriate value of �i, the values of d�i/dN and Hi can be chosen from the slow roll

conditions and the Friedmann equations. In slow roll approximation wherein d
2
�

dN2 ⌧ d�

dN
and

✏ ⌧ 1, eq. (2.15) reads
d�

dN
+

1

3H2
V

0(�) ' 0, (2.18)

whose solution is given by

�(N) ' �i �
p

2✏V MPl(N �Ni), (2.19)

where ✏V is the first potential slow roll parameter defined as ✏V ⌘ M
2

Pl

2

⇣
V

0

V

⌘
2

. It is clear form

this slow roll solution that � is a monotonically decreasing function of N . However, the same
does not remain valid in the regime of ultra slow roll wherein the slow roll conditions do not
hold. Since the potential is very flat and ✏ becomes very small, one can now ignore the last
term in (2.15) and thus it reduces to

d
2
�

dN2
+ 3

d�

dN
' 0, (2.20)

which leads to
d�

dN
⇠ exp [�3(N �Ni)], (2.21)

and therefore, the inflaton velocity gets exponentially suppressed. This also implies that
✏ ⇠ exp [�6(N � Ni)] and ⌘ ' ✏ + (3 � ✏) ⇠ 3 during the ultra slow roll phase which is
also evident in Figure 2. As we shall discuss later, this behaviour leads to an exponential
enhancement of the curvature perturbations which induces a tremendous growth of the power
spectrum around the scales corresponding to the ultra slow roll regime.

Let us now quickly comment on the initial conditions �i, d�i/dN and Hi we need for the
background evolution. The initial value of the inflaton field �i is important for two reasons:
first, a minimum value of �i ensures that the field acquires enough momentum to classically4

cross over the inflection point within a finite number of e-folds N and second, the slowing
down of the inflation near the inflection point depends, exclusively on the choice of other
parameters in the potential and the nature of the inflection point, but it also largely depends
on �i. Once the value of �i is appropriately chosen, the initial values of d�/dN and Hubble
parameter Hi can be obtained from the slow roll conditions and the Friedmann equations,
respectively.

At this point when we have all the information required for the background evolution of
the inflaton field, we realize that for a particular set of parameters which satisfy the inflection

4
Since the inflaton field in the ultra slow roll regime undergoes a phase of strong deceleration, the quantum

di↵usion of the inflation becomes very relevant around the inflection point. We shall discuss its implications

for our model elsewhere [81].
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2.3 A necessary criterion for the enhancement of curvature perturbations

As briefly mentioned earlier in this section, a necessary condition for the production of PBHs
from inflation leads to the fact that the spectrum of primordial curvature perturbations has
to increase by a factor of ⇠ 107 or so in its amplitude at scales much smaller than the
observable CMB scales. Such an enhancement can induce large matter density fluctuations
at the horizon re-entry of these scales which can collapse to form PBHs. Let us briefly review
the condition under which such an enhancement can happen [82–85]. We start with the
Fourier mode equation for the comoving curvature perturbation Rk in single field inflation
which follows from the well known Mukhanov-Sasaki equation

R00
k
+ 2

✓
z
0

z

◆
R0

k
+ k

2Rk = 0. (2.22)

The comoving curvature perturbation Rk matches with the curvature perturbation on the
constant density hypersurface ⇣k in the super-horizon limit. In the rest of this paper, we shall
use these two variables interchangeably to describe the scalar power spectrum. The ‘pump
field’ z is defined as z = a�̇/H and the friction term z

0
/z is given by

z
0

z
= aH(1 + ✏� ⌘). (2.23)

During inflation, while ✏ < 1, ⌘ can in principle take any value. However, during slow roll
inflation, ✏, |⌘| ⌧ 1 should be satisfied. At the first order in slow roll, one can consider ✏ and
⌘ to be constants and the naive solution to (2.23) is given by

z(a) ⇠ exp

Z
da

a
(1 + ✏� ⌘)

�
, (2.24)

which in the slow roll limit simplifies to z ⇠ a. Let us now look for a solution to (2.22) in the
super-horizon limit, k ⌧ aH. A very general solution to this equation can be expressed as

Rk(⌧) ' ↵uk(⌧) + � vk(⌧), (2.25)

with the condition ↵ + � = 1 without loos of generality [83]. Here, uk(⌧) and vk(⌧) are the
growing and decaying modes, respectively and ↵ and � are their fractional contributions at
any given time. This general solution can be rewritten in a more transparent form as

Rk(⌧) ' C1 + C2

Z
d⌧

z2
. (2.26)

In slow roll inflation, it is evident to note that the second term decays rapidly as a�3 outside
the horizon and therefore, the curvature perturbationRk is conserved in time at super-horizon
scales for each wavenumber k and its amplitude is determined by the constant C1. Since the
decaying mode dies completely in this limit, one can safely compute the power spectrum of
curvature perturbations at the horizon exit in slow roll by fixing the initial conditions for
each Fourier mode using the Bunch-Davies vacuum at sub-horizon scales.

However, a complete di↵erent situation arises if the friction term z
0
/z transiently changes

sign and becomes a ‘driving term’ during an epoch for di↵erent modes right after they cross
the horizon. This is equivalent to the following condition

(1 + ✏� ⌘) < 0 . (2.27)
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z2
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which are given in rather simpler form as

a =
bx

2
�
2dx2 + 3

�

(d2x4 � 3)
, (2.10)

c =
b

x2(d2x4 � 3)
. (2.11)

First, by looking at the potential in (2.4), we can impose d > 0 to avoid any singularities in
the potential. Also, if the potential should be monotonously increasing for both large and
small field values, we find, from (2.6) and (2.7), that

a > 0 , c > 0. (2.12)

If we limit ourselves in the positive field regime of the potential i.e. x > 0, we notice that
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Therefore, in this model, we get two di↵erent kinds of inflection points for two choices of b,
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the details of inflection points for this model analytically, we shall resort to a numerical scan
of the parameter space to obtain real inflection points. In fact, we have noticed that if we
first fix the value of the inflection point x0 and the values of b and d, one can then determine
a and c using (2.10) and (2.11). Although the potential has four independent parameters,
one only needs to fix two of them and the rest will be determined by the inflection point
conditions. We shall elaborate on the details of our numerical strategy about how to scan
the parameter space in Section 4.

2.2 Background evolution: slow roll, ultra slow roll and all that

After specifying the potential, we can now study the background inflationary dynamics that
arises from it. Using the number of e-folds, N(t) = ln (a(t)/ai), as the independent time
variable, the system is governed by the following Friedmann equations

H
2 =

V (�)

M
2

Pl
(3� ✏)

, (2.13)

dH

dN
= � H

2M2

Pl

✓
d�

dN

◆
2

, (2.14)

with the Klein-Gordon equation for � as

d
2
�

dN2
+ (3� ✏)

d�

dN
+

1

H2
V

0(�) = 0, (2.15)

where ✏ is the first Hubble slow roll parameter, given by

✏ = � Ḣ

H2
=

1

2M2

Pl

✓
d�

dN

◆
2

. (2.16)
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conditions and the Friedmann equations. In slow roll approximation wherein d
2
�

dN2 ⌧ d�

dN
and

✏ ⌧ 1, eq. (A.3) reads
d�

dN
+

1

3H2
V

0(�) ' 0, (A.6)

whose solution is given by

�(N) ' �i �
p

2✏V MPl(N �Ni), (A.7)

where ✏V is the first potential slow roll parameter defined as ✏V ⌘ M
2

Pl

2

⇣
V

0

V

⌘
2

. It is clear form

this slow roll solution that � is a monotonically decreasing function of N . However, the same
does not remain valid in the regime of ultra slow roll wherein the slow roll conditions do not
hold. Since the potential is very flat and ✏ becomes very small, one can now ignore the last
term in (A.3) and thus it reduces to

d
2
�

dN2
+ 3

d�

dN
' 0, (A.8)

which leads to
d�

dN
⇠ exp [�3(N �Ni)], (A.9)

and therefore, the inflaton velocity gets exponentially suppressed. This also implies that
✏ ⇠ exp [�6(N �Ni)] and ⌘ ' ✏ + (3� ✏) ⇠ 3 during the ultra slow roll phase which is also
evident in Figure 2. As we have discussed in Sec. 2.2, this behaviour leads to an exponential
enhancement of the curvature perturbations which induces a tremendous growth of the power
spectrum around the scales corresponding to the ultra slow roll regime.

B PBHs mass fraction and associated uncertainties

It is well known that the calculation of the PBHs mass fraction for a primordial power spec-
trum PR(k) su↵ers from many approximations and uncertainties and each of these uncer-
tainties changes the final result drastically. As we shall discuss here, the PBH mass fraction
needs to be in a very narrow mass range to lead to a significant contribution to the total
CDM and therefore, in order to produce such a monochromatic mass spectrum, the choice
of the collapse formalism or the value of the critical density contrast becomes very crucial.
In what follows, we shall briefly discuss some of these uncertainties.

B.1 Peaks theory vs. Press-Schechter formalism

Primordial overdensities on smaller scales collapsing to form PBHs instantaneously right
after the horizon entry of these scales in the radiation dominated universe can be described
by two formalisms: Peaks theory and Press-Schechter. Both the formalisms use a critical
overdensity above which the fluctuations should collapse and form PBHs. In Peaks theory,
the critical value is stated in terms of the peak value of a fluctuation while in the Press-
Schechter approach, it is calculated as the average value of a fluctuation. In principle, the
relationship between the peak value and the average value of a fluctuation depends on its
shape but in practice, they are expected to di↵er only by a factor of order unity, with the
peak value being higher. In general, results from these two established methods do not
show convergence with all the other criterias and parameters fixed [131–133]. For our model
which produces a nearly monochromatic PBH mass fraction, we find that the calculated mass
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abundance of PBHs which is given by [89]

⌦PBH =

Z
dM

M
⌦PBH(M), (3.3)

where

fPBH(M) ⌘ ⌦PBH(M)

⌦DM

=
�(M)

8⇥ 10�16

⇣
�

0.2

⌘
3/2

⇣
g⇤

106.75

⌘�1/4
✓

M

1018 g

◆�1/2

, (3.4)

and the total CDM fraction is constrained at equality to be ⌦DM ' 0.42 [90]. In a given
inflationary model, the aim is to obtain the largest allowed value of fPBH in a given mass
range. This not only su↵ers from the fine-tuning of various parameters of the model but also
turns out to be extremely sensitive to the peak in the primordial spectrum PR or the choice
of �c which we fix as �c = 0.414 as discussed in appendix B. In this paper we shall essentially
limit ourselves to the mass fraction in a very narrow mass range (a monochromatic mass
fraction) and shall not consider the cases wherein PBHs are produced in a continuous broad
mass range or discretely at di↵erent mass ranges. In such cases, the mass fraction �(M) is
conventionally described by a mass function  (M).

We now employ the Press-Schechter formalism to compute the PBH mass fraction. We
start with the simple relation between the comoving curvature perturbation Rk and the
density contrast �(t, k) which is given by [91–93]

�(k, t) ' 2(w + 1)

(3w + 5)

✓
k

aH

◆
2

Rk. (3.5)

At the horizon re-entry of a given mode in the radiation dominated epoch with w = 1/3, one
finds that � = (4/9)R. Using this, we can obtain the following relation between the power
spectra of � and Rk

P�(k, t) '
4(w + 1)2

(3w + 5)2

✓
k

aH

◆
4

PR(k). (3.6)

Now, the variance of the density contrast �2
�
at a comoving scale R, course grained using a

Gaussian window function described in (B.2) can be expressed as

�
2

�
(t, R) =

Z
dk

k
P�(k, t)W

2(k,R). (3.7)

For PBHs which are formed due to the collapse of a comoving wavenumber k just after
the horizon re-entry during the radiation epoch, we can absorb the time dependence in the
comoving smoothing scale, R = (aH)�1. This leads to

�
2

�
(R) ' 16

81

Z
dk

k
(kR)4PR(k)W

2(k,R). (3.8)

In the Press-Schechter formalism of gravitational collapse [94], the mass fraction �(M) in
PBHs of mass M , is given by the probability that the overdensity � is above a certain
threshold value �c for collapse. Assuming � is a Gaussian random variable with mass (or
scale) dependent variance, the mass fraction �(M) at the time of formation is then given by3

�f (M) =
1q

2⇡�2
�
(M(R))

Z 1

�c

d� exp

✓
� �

2

2�2
�
(M(R))

◆
=

1

2
erfc

✓
�cp

2��(M(R))

◆
, (3.9)

3
Note that, one can include here the famous “fudge factor” of 2 of the Press-Schechter formalism as it is

done conventionally.
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where erfc(x) is the complementary error function. Often, one can use the fact that it is
the fluctuations in the upper tail of the distribution that form the PBHs and therefore, the
complementary error function in the above expression can be approximated by an exponential
function so that the mass fraction is given by [57]

�f (M) '
r

1

2⇡

��(M(R))

�c
exp

✓
� �

2
c

2�2

�
(M(R))

◆
. (3.10)

In order to proceed further, we first need to relate the comoving smoothing scale R to the
PBH mass at formation. Since every smoothing scale R corresponds to a formed PBH of
comoving radius R, the formation mass is simply given by

M(R) =
4⇡

3
�⇢ (aR)3, (3.11)

where � ⇠ 0.2 is the e�ciency factor as mentioned in the introduction and R = (aH)�1 at the
horizon re-entry of that scale. As PBHs in our scenario are formed when the respective scales
re-enter the horizon during radiation domination, we have a(t) ⇠ t

1/2 so aH ⇠ 1/a and thus
R ⇠ a. Upon using this, we can find the following useful relation, Rf/Req = af/aeq where
R

�1
eq ⇠ keq = 0.07⌦mh

2Mpc�1 and a
�1
eq = 24000⌦mh

2. Using this together with (3.11) and
Hf = (afRf )�1, we can now find the PBHs mass at formation as

M(Rf ) = 4⇡�M2

Pl

✓
aeq

Req

◆
R

2

f
. (3.12)

This equation can be used to calculate the mass fraction �f (M) from (3.9) or (3.10). Once
�f (M) is calculated, we can readily use (3.2) to calculate the mass fraction at equality which
is given by [73]

�eq(M) ' �f (M)

✓
aeq

af

◆
= �f (M)

✓
Req

Rf

◆
. (3.13)

Assuming a monochromatic mass spectrum, the PBHs fraction in the form of dark matter
can be expressed as [73]

fPBH(M) =
⌦PBH(M)

⌦DM

⇡
⌦eq

PBH
(M)

0.42
, (3.14)

where ⌦eq

PBH
(M) ⇠ �eq(Mmax) and Mmax is the PBH mass which contributes the maximum

mass fraction at the radiation-matter equality.

4 Numerical framework and results

4.1 Limitations of the slow roll approximation and the exact power spectra

Let us start with the initial conditions �i, d�i/dN and Hi we need for the background
evolution. The initial value of the inflaton field �i is important for two reasons: first, a
minimum value of �i ensures that the field acquires enough momentum to classically4 cross
over the inflection point within a finite number of e-folds N and second, the slowing down of

4
Since the inflaton field in the ultra slow roll regime undergoes a phase of strong deceleration, the quantum

di↵usion of the inflation becomes very relevant around the inflection point. We shall discuss its implications

for our model elsewhere [95].
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Since ✏ > 0 by definition, this condition can only be achieved if ⌘ > 1 during some epoch. This
can be satisfied if the universe goes through a dynamical phase during which the slow-roll
approximation breaks down. In particular, the ultra slow-roll regime that we mentioned in
the introduction, corresponds to a dynamical phase during which ⌘ � 3. During this regime,
the condition (2.14) is satisfied and hence z now decreases with time instead of increasing.
This implies that the otherwise decaying mode appearing in (2.13) now becomes a growing
mode in this regime and its contribution to the curvature perturbation Rk can no longer be
neglected. This transient growth of the decaying mode can be used to enhance the primordial
spectrum of curvature perturbations for a short range of scales and thus, to produce PBHs
on these scales. However, one has to fine tune a given inflationary scenario to obtain this
transient departure from slow roll such that PBHs are abundantly produced on appropriate
scales so as to contribute to a larger fraction to the CDM.

In general, in any potential with a plateau region as in our scenario, this transient phase
with a departure from slow roll is very likely to be present. In our model, we find that this
ultra slow roll regime is present for a few e-folds corresponding to the scales appropriate for
PBHs formation, as shown in Figure 2. It is the dynamics of this transient regime that is
responsible for the required exponential growth of Rk resulting in a suitable bump in the
P⇣(k) as high as ⇠ 10�2 needed for the PBHs formation.

3 Primordial black holes mass fraction and the collapse criteria

In this section, we shall quickly discuss the basic formalism to calculate the abundance of
PBHs from a primordial power spectrum obtained at the end of inflation. In appendix B, we
shall also point out various uncertainties in the estimation of the final mass fraction which
are associated with the underlying collapse criteria, the choice of the window function and
the value of the critical density contrast. As we shall discuss later, it turns out that the
mass fraction is exponentially sensitive to the value of the critical density contrast and can
significantly change the predictions of a model for the same primordial power spectrum.

The mass fraction �(M) which specifies the fraction of the energy density of the universe
populated by PBHs formed with a mass M is an important quantity, defined by

�(M) ⌘ ⇢
PBH

(M)

⇢tot
. (3.1)

The mass fraction is a very important quantity in this context which is typically calculated at
the time of the PBH formation tf but is generally translated to the epoch of radiation-matter
equality teq to compare it with the CDM fraction in the universe at that epoch. Since PBHs
behave as matter, ⇢

PBH
⇠ ⇢m ⇠ a

�3 and since they are formed during radiation domination,
⇢tot ⇠ ⇢rad ⇠ a

�4, this implies that �(M) ⇠ a i.e. �(M) grows with the scale factor until
the radiation-matter equality. This relation can be used to arrive at the following expression
relating the mass fraction at the epochs of formation and the radiation-matter equality as

�eq(M) ' �f (M)

✓
aeq

af

◆
, (3.2)

where af is the scale factor at t = tf i.e at the time of formation of PBHs. Since one assumes
that PBHs are formed immediately by the collapse of a given scale at its horizon re-entry,
af can actually be calculated using the relation k = aH. A very useful quantity is the total
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abundance of PBHs which is given by [89]

⌦PBH =

Z
dM

M
⌦PBH(M), (3.3)

where

fPBH(M) ⌘ ⌦PBH(M)

⌦DM

=
�(M)

8⇥ 10�16

⇣
�
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⌘
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⇣
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⌘�1/4
✓

M

1018 g

◆�1/2

, (3.4)

and the total CDM fraction is constrained at equality to be ⌦DM ' 0.42 [90]. In a given
inflationary model, the aim is to obtain the largest allowed value of fPBH in a given mass
range. This not only su↵ers from the fine-tuning of various parameters of the model but also
turns out to be extremely sensitive to the peak in the primordial spectrum PR or the choice
of �c which we fix as �c = 0.414 as discussed in appendix B. In this paper we shall essentially
limit ourselves to the mass fraction in a very narrow mass range (a monochromatic mass
fraction) and shall not consider the cases wherein PBHs are produced in a continuous broad
mass range or discretely at di↵erent mass ranges. In such cases, the mass fraction �(M) is
conventionally described by a mass function  (M).

We now employ the Press-Schechter formalism to compute the PBH mass fraction. We
start with the simple relation between the comoving curvature perturbation Rk and the
density contrast �(t, k) which is given by [91–93]

�(k, t) ' 2(w + 1)

(3w + 5)

✓
k

aH

◆
2

Rk. (3.5)

At the horizon re-entry of a given mode in the radiation dominated epoch with w = 1/3, one
finds that � = (4/9)R. Using this, we can obtain the following relation between the power
spectra of � and Rk

P�(k, t) '
4(w + 1)2

(3w + 5)2

✓
k

aH

◆
4

PR(k). (3.6)

Now, the variance of the density contrast �2
�
at a comoving scale R, course grained using a

Gaussian window function described in (B.2) can be expressed as

�
2

�
(t, R) =

Z
dk

k
P�(k, t)W

2(k,R). (3.7)

For PBHs which are formed due to the collapse of a comoving wavenumber k just after
the horizon re-entry during the radiation epoch, we can absorb the time dependence in the
comoving smoothing scale, R = (aH)�1. This leads to

�
2

�
(R) ' 16

81

Z
dk

k
(kR)4PR(k)W

2(k,R). (3.8)

In the Press-Schechter formalism of gravitational collapse [94], the mass fraction �(M) in
PBHs of mass M , is given by the probability that the overdensity � is above a certain
threshold value �c for collapse. Assuming � is a Gaussian random variable with mass (or
scale) dependent variance, the mass fraction �(M) at the time of formation is then given by3

�f (M) =
1q

2⇡�2
�
(M(R))

Z 1

�c

d� exp

✓
� �

2

2�2
�
(M(R))

◆
=

1

2
erfc

✓
�cp

2��(M(R))

◆
, (3.9)

3
Note that, one can include here the famous “fudge factor” of 2 of the Press-Schechter formalism as it is

done conventionally.
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Effects of reheating — remapping of scales
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Induced secondary GWs

source to the evolution equation for tensor perturbations. Furthermore, one can rewrite hij

in terms of the basis
n

e
+

ij(k), e⇥ij(k)
o

of polarisation tensors as follows

hij(⌧,x) =

Z
d3

k

(2⇡)3/2

h
e
+

ij(k)h+

k (⌧) + e
⇥
ij(k)h⇥

k (⌧)
i
e
ik·x

, (2.2)

where e
+

ij(k) = 1p
2
(ei(k)ej(k) � ēi(k)ēj(k)) and e

⇥
ij(k) = 1p

2
(ei(k)ēj(k) + ēi(k)ej(k)), with

ei(k) and ēi(k) being normalised three-dimensional vectors orthonormal to k. With the
Fourier modes hk, one can now define the dimensionless power spectrum Ph as

k
3

2⇡2

D
h
�
k(⌧) h

�0
k0(⌧)

E
= ���0�

3(k + k0)Ph(⌧, k), (2.3)

where �, �
0 = {+, ⇥} represent the two polarisations of tensor perturbations. Now, the GWs

energy density per logarithmic wavelength can be defined as

⌦GW(⌧, k) ⌘ 1

⇢c

d ⇢GW

d lnk
=

⇢GW(⌧, k)

⇢tot(⌧)
=

1

24

✓
k

H

◆
2

Ph(⌧, k), (2.4)

where the overline denotes an average over time. This energy density ⌦GW at the present
epoch ⌧ = ⌧0 is an observationally relevant quantity which can be calculated using the power
spectrum Ph. Note that, in parity invariant scenarios as in our model, both the polarisations
will lead to the same result for the GWs spectrum. However, in parity violating situations,
the power spectrum will be di↵erent for the two polarisations. In particular, when one
helicity mode is exponentially amplified due to dynamical instabilities than the other, the
power spectrum turns out to be maximally helical and has very interesting observational
implications. For simplicity, from now on, we shall ignore the superscript � in hk.

2.2 Induced tensor modes and their power spectrum

Using the standard canonical quantisation procedure for hij , one finds that the equation of
motion for the Fourier modes hk, sourced by the scalar perturbations � is given by

h
00
k(⌧) + 2Hh

0
k(⌧) + k

2
hk(⌧) = 4Sk(⌧), (2.5)

where Sk is the Fourier component of the source term comprising of second order scalar
perturbations. This di↵erential equation can be solved by the Green’s function method
which yields the solution as [55]

hk(⌧) =
4

a(⌧)

Z ⌧

d⌧̄ a(⌧̄) Gk(⌧, ⌧̄) Sk(⌧̄), (2.6)

where Gk(⌧, ⌧̄) is the solution to the following equation

G
00
k(⌧, ⌧̄) +


k
2 � a

00(⌧)

a(⌧)

�
Gk(⌧, ⌧̄) = �(⌧ � ⌧̄). (2.7)

Since we are interested in the induced GWs background on smaller scales corresponding
to k � keq which re-enter the horizon during RD epoch, we shall restrict our following
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discussion to RD epoch with w = 1/3 only. In that case, the source term Sk can be written
as

Sk =

Z
d3

q

(2⇡)3/2
e
�
ij(k)qiqj

⇥
2�q�k�q +

�
H�1�0

q + �q
� �

H�1�0
k�q + �k�q

�⇤
. (2.8)

As mentioned earlier, this source term is at the second order in �k which is the Fourier mode
of � and is explicitly symmetric under the exchange of q ! k � q. During the RD era,
induced GWs are produced mainly around the horizon re-entry, without growing any further
because the gravitational potential oscillates after horizon re-entry. At first order, assuming
no anisotropic pressure, the time evolution of �k is governed by

�00
k(⌧) + 3H(1 + c

2

s )�
0
k(⌧) + (2H0 + (1 + 3c

2

s )H2 + c
2

sk
2)�k(⌧) = 0, (2.9)

For RD era, using c
2
s = w = 1/3 and H = 1/⌧ , the above equation reduces to

�00
k(⌧) +

4

⌧
�0
k(⌧) +

1

3
k
2�k(⌧) = 0, (2.10)

which has an analytical solution as

�k(⌧) =
A(k)
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◆�
. (2.11)

This solution will act as a source for the GWs at the second order. At early times when
k⌧ ! 0, we find that

�k(⌧) = �A(k)

35/2
+

B(k)

(k⌧)3
. (2.12)

Here, the first term is the constant mode i.e. constant in time but the second term is
the decaying mode which can be neglected hereafter. We can therefore write the dominant
solution for �k(⌧) in RD era as

�k(⌧) = T (k⌧)�̃k, (2.13)

where T (k⌧) is the transfer function in RD and its expression is given by

T (k⌧) =
9

(k⌧)2

"p
3
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sin

✓
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3

◆
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✓
k⌧p

3

◆#
. (2.14)

As is well known, in the RD era, the scalar perturbation �k is directly related to the gauge
invariant comoving curvature perturbation by �̃k = 2

3
R(k) so we can now write

�k(⌧) =
2

3
T (k⌧)R(k). (2.15)

All the details of the calculation of the induced tensor spectrum can be found in [55, 57, 77]
and thus, we shall only restrict to the essential equations needed for our discussion.

One can now solve the mode equation (2.5) together with the source term given in (2.8).
The final solution can be written in a compact form as

h
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k(⌧) =

4

9

Z
d3

p

(2⇡)3
1

k3⌧
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s(k,p)R(p)R(k � p)
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i
, (2.16)
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s = w = 1/3 and H = 1/⌧ , the above equation reduces to
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which has an analytical solution as
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This solution will act as a source for the GWs at the second order. At early times when
k⌧ ! 0, we find that

�k(⌧) = �A(k)

35/2
+

B(k)

(k⌧)3
. (2.12)

Here, the first term is the constant mode i.e. constant in time but the second term is
the decaying mode which can be neglected hereafter. We can therefore write the dominant
solution for �k(⌧) in RD era as

�k(⌧) = T (k⌧)�̃k, (2.13)

where T (k⌧) is the transfer function in RD and its expression is given by
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. (2.14)

As is well known, in the RD era, the scalar perturbation �k is directly related to the gauge
invariant comoving curvature perturbation by �̃k = 2

3
R(k) so we can now write

�k(⌧) =
2

3
T (k⌧)R(k). (2.15)

All the details of the calculation of the induced tensor spectrum can be found in [55, 57, 77]
and thus, we shall only restrict to the essential equations needed for our discussion.

One can now solve the mode equation (2.5) together with the source term given in (2.8).
The final solution can be written in a compact form as
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e
s(k,p)R(p)R(k � p)
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Ic(v, u) cos(k⌧) + Is(v, u) sin(k⌧)

i
, (2.16)
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source to the evolution equation for tensor perturbations. Furthermore, one can rewrite hij

in terms of the basis
n

e
+

ij(k), e⇥ij(k)
o

of polarisation tensors as follows

hij(⌧,x) =

Z
d3
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k (⌧) + e
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ij(k)h⇥

k (⌧)
i
e
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, (2.2)

where e
+

ij(k) = 1p
2
(ei(k)ej(k) � ēi(k)ēj(k)) and e

⇥
ij(k) = 1p

2
(ei(k)ēj(k) + ēi(k)ej(k)), with

ei(k) and ēi(k) being normalised three-dimensional vectors orthonormal to k. With the
Fourier modes hk, one can now define the dimensionless power spectrum Ph as

k
3

2⇡2

D
h
�
k(⌧) h

�0
k0(⌧)

E
= ���0�

3(k + k0)Ph(⌧, k), (2.3)

where �, �
0 = {+, ⇥} represent the two polarisations of tensor perturbations. Now, the GWs

energy density per logarithmic wavelength can be defined as

⌦GW(⌧, k) ⌘ 1

⇢c

d ⇢GW

d lnk
=

⇢GW(⌧, k)

⇢tot(⌧)
=

1

24

✓
k

H

◆
2

Ph(⌧, k), (2.4)

where the overline denotes an average over time. This energy density ⌦GW at the present
epoch ⌧ = ⌧0 is an observationally relevant quantity which can be calculated using the power
spectrum Ph. Note that, in parity invariant scenarios as in our model, both the polarisations
will lead to the same result for the GWs spectrum. However, in parity violating situations,
the power spectrum will be di↵erent for the two polarisations. In particular, when one
helicity mode is exponentially amplified due to dynamical instabilities than the other, the
power spectrum turns out to be maximally helical and has very interesting observational
implications. For simplicity, from now on, we shall ignore the superscript � in hk.

2.2 Induced tensor modes and their power spectrum

Using the standard canonical quantisation procedure for hij , one finds that the equation of
motion for the Fourier modes hk, sourced by the scalar perturbations � is given by

h
00
k(⌧) + 2Hh

0
k(⌧) + k

2
hk(⌧) = 4Sk(⌧), (2.5)

where Sk is the Fourier component of the source term comprising of second order scalar
perturbations. This di↵erential equation can be solved by the Green’s function method
which yields the solution as [55]

hk(⌧) =
4

a(⌧)

Z ⌧

d⌧̄ a(⌧̄) Gk(⌧, ⌧̄) Sk(⌧̄), (2.6)

where Gk(⌧, ⌧̄) is the solution to the following equation

G
00
k(⌧, ⌧̄) +


k
2 � a

00(⌧)

a(⌧)

�
Gk(⌧, ⌧̄) = �(⌧ � ⌧̄). (2.7)

Since we are interested in the induced GWs background on smaller scales corresponding
to k � keq which re-enter the horizon during RD epoch, we shall restrict our following
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density at the present epoch. Since the energy density of GWs decays as radiation ⇢ ⇠ a
�4,

we can calculate the fraction of energy density of GWs in terms of the current energy density
of radiation ⌦r,0 and ⌦GW(⌧f , k) at a time ⌧f during the RD era, before all the available
degrees of freedom become non-relativistic. We define the e↵ective energy density of GWs
per logarithmic interval of k through

⇢GW(⌧) ⌘
Z

d ln k ⇢GW(⌧, k), (2.22)

where we assume the homogeneity and isotropy of the these GWs. We shall briefly comment
on the anisotropy of GWs in the final section. The present value of ⌦GW(⌧0, k) can be written
as follows

⌦GW(⌧0, k) =
⇢GW(⌧0, k)

⇢GW(⌧f , k)

⇢r(⌧f )

⇢r(⌧0)

⇢r(⌧0)

⇢c
⌦GW(⌧f , k). (2.23)

Using the conservation of entropy, we obtain

⇢GW(⌧0, k)

⇢GW(⌧f , k)
=

✓
af

a0

◆
4

, (2.24)
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⇢r(⌧0)
=

⇡2

30
g⇤,f T

4

f

⇡2

30
g⇤,0 T

4

0

=

✓
g⇤,f
g⇤,0

◆✓
g⇤s,0
g⇤s,f

◆
4/3✓

a0

af

◆
4

, (2.25)

⇢r(⌧0)

⇢c
= ⌦r,0. (2.26)

If there are no extra relativistic degrees on freedom (beyond SM) at ⌧ = ⌧f and using entropy
conservation, we find

cf =
g⇤,f
g⇤,0

✓
g⇤s,0
g⇤s,f

◆
4/3

⇡ 0.4 . (2.27)

This allows us to write down the final expression for ⌦GW(⌧0, k) as

⌦GW(⌧0, k) h
2 ' 6.6 ⇥ 10�7

✓
⌦r,0 h

2

4.0 ⇥ 10�5

◆✓
k

H(⌧f )

◆
2

Ph(⌧f , k), (2.28)

which can also be written in terms of frequency f using the following relation

f =
k

2⇡
= 1.5 ⇥ 10�15

✓
k

1 Mpc�1

◆
Hz. (2.29)

In order to compute ⌦GW(⌧0, k), we need to perform the integral in equation (2.19) numer-
ically. However, this integral can also be computed analytically for very few cases such as
the case of a delta function power spectrum. As has been discussed earlier, it turns out to
be very useful to make a change of variables as d = (u � v)/

p
3 and s = (u + v)/

p
3, we get

⌦GW(⌧0, k) h
2 ' 2.4⇥10�5

✓
⌦r,0 h

2

4.0 ⇥ 10�5

◆✓
k
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2 Z 1p

3
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3
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Z 1

1p
3

ds
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s2 � d2
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⇥ PR

 
k
p

3

2
(s + d)

!
PR

 
k
p

3

2
(s � d)

!h
I2

c (d, s) + I2

s (d, s)
i
. (2.30)
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Figure (1) On the left, we plot the power spectra of primordial curvature perturbations PR
(solid curves) and primordial tensor perturbations Ph (dashed curves) for di↵erent parameters
of the scenario that we had discussed in our earlier work [32]. All these spectra show a similar
enhancement at smaller scales, required for the abundant PBHs production. Also, shown are
the relevant constraints from CMB spectral distortions and PBHs formation. On the right,
we plot the spectral energy density of induced GWs corresponding to the spectra on the left.
All the GWs spectra also show a similar behaviour. In particular, a bump in PR on small
scales (large k) leads to a peak in ⌦GWh

2 on larger frequencies which fall in the sensitivity
regimes of various future space based GWs observatories such as LISA, TAIJI, DECIGO or
BBO. The colour coding of di↵erent plots is consistent across the two figures.

This is the final expression we directly use in our numerical routine together with the ana-
lytical results for Ic and Is in an appropriate limit which are given in the following compact
form as [77]

Ic(d, s) = �36⇡
(s2 + d

2 � 2)2

(s2 � d2)3
✓(s � 1), (2.31)

Is(d, s) = �36
(s2 + d

2 � 2)

(s2 � d2)2


(s2 + d

2 � 2)

(s2 � d2)
log

(1 � d
2)

|s2 � 1| + 2

�
. (2.32)

In our previous work [32], we had developed a numerical code to compute the PBHs
mass fraction for inflationary models which allows violations of SR condition, needed for the
enhancement of the power spectrum to produce su�cient mass fraction of PBHs. We have
now extended that code by including a routine to also compute the induced GWs background
in such models. In figure 1, we have plotted the power spectra of primordial curvature and
tensor perturbations PR and Ph for the scenario that we had discussed in our earlier work
[32]. The power spectra PR correspond to di↵erent choices of parameters of the model which
leads to di↵erent values of the spectral index n

S
at the pivot scale. All these spectra show

a similar enhancement PR ⇠ k
4 at smaller scales, an interesting behaviour which has also

been obtained using an analytical formalism [78, 79]. The spectral distortions constraints
on the primordial power spectrum derived from COBE/FIRAS and forecasts for PIXIE are
also shown [80]. In the right panel of this figure, we have plotted the corresponding spectral
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density at the present epoch. Since the energy density of GWs decays as radiation ⇢ ⇠ a
�4,

we can calculate the fraction of energy density of GWs in terms of the current energy density
of radiation ⌦r,0 and ⌦GW(⌧f , k) at a time ⌧f during the RD era, before all the available
degrees of freedom become non-relativistic. We define the e↵ective energy density of GWs
per logarithmic interval of k through
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d ln k ⇢GW(⌧, k), (2.22)

where we assume the homogeneity and isotropy of the these GWs. We shall briefly comment
on the anisotropy of GWs in the final section. The present value of ⌦GW(⌧0, k) can be written
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If there are no extra relativistic degrees on freedom (beyond SM) at ⌧ = ⌧f and using entropy
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which can also be written in terms of frequency f using the following relation
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In order to compute ⌦GW(⌧0, k), we need to perform the integral in equation (2.19) numer-
ically. However, this integral can also be computed analytically for very few cases such as
the case of a delta function power spectrum. As has been discussed earlier, it turns out to
be very useful to make a change of variables as d = (u � v)/

p
3 and s = (u + v)/

p
3, we get
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where v = p/k, u = |k � p|/k and

e
s(k,p) ⌘ e

s,ij(k)pipj =

(
1p
2
p
2 sin2

✓ cos 2� for s = +,

1p
2
p
2 sin2

✓ sin 2� for s = ⇥.
(2.17)

The analytic form of the two functions Ic and Is can be found in [77]. In order to calculate
the power spectrum Ph from the solution (2.16), we immediately realise that it will involve
the four point functions of R(k). However, noting that at leading order it is a Gaussian
variable defined by the dimensionless power spectrum PR as

k
3

2⇡2

⌦
R(k)R(k0)

↵
= (2⇡)3�(3)(k + k0)PR(k). (2.18)

Upon using Wick’s theorem, the four point functions can be written in terms of the two point
function or the power spectrum with all possible contractions. After a lot of simplification,
one finds

Ph(⌧, k) = 4

Z 1

0

dv

Z
1+v

|1�v|
du

✓
4v

2 � (1 + v
2 � u

2)2

4uv

◆2

I
2

RD(v, u, x)PR(kv)PR(ku), (2.19)

where x = k⌧ and x ! 0 indicates the onset of the RD epoch. The factor IRD is a very
involved function and its general form can be found in [55]. For small x, the leading term
of IRD is independent of u and v, IRD ' x

2
/2. From observational point of view, one is

interested in the GWs spectrum today, corresponding to the late time limit i.e. x � 1 which
is given by

⌦GW(⌧, k) =
1
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✓
k

H

◆
2 Z 1

0

dv

Z
1+v
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2)2

4uv
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I
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(v, u, x)PR(kv)PR(ku),

(2.20)

and in the late time limit x ! 1, one gets

I
2

RD
(v, u, x ! 1) =

1

2

✓
3(u2 + v

2 � 3)

4u3v3x

◆2 ✓
�4uv + (u2 + v

2 � 3) log
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3 � (u � v)2

����
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2(u2 + v
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p

3)

�
.(2.21)

Note that, in order to calculate the GWs energy density, one needs to compute a 2d integral
with an involved integrand. This integral can be solved numerically, after changing to a
new set of variables which make it easier to solve. To the best of our knowledge, the GWs
spectral energy density has only been calculated completely analytically for very few cases,
for instance, when the power spectrum PR is a delta function at smaller scales [55, 77]. In
all other cases and in particular, in inflationary models when the power spectrum PR is
calculated completely numerically, this integral can only be evaluated numerically to obtain
the resulting GWs spectrum for various cases.

2.3 The present spectral energy density of GWs

In order to compare the predictions of a given scenario of GWs production with the sensitiv-
ities of present and future GWs detectors, one needs to calculate the GWs spectral energy
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Induced secondary GWs
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The ‘three’ peaks
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Figure (3) On the left, we plot the PBHs mass fraction at the formation epoch for two
di↵erent cases, produced in our model [32] in the very low mass range corresponding to
M ⇠ 10�20 � 10�21

M�, as well as the observational constraints arising from big bang nucle-
osynthesis (BBN) and extragalactic �-ray background. Such small mass PBHs would have
been completely evaporated by today due to Hawking radiation. However, they will still
induce an observable secondary GWs background in the higher frequency range which falls
in the design sensitivity contours of the Advanced LIGO detector and therefore, can, in
principle, be detected in future runs, as shown on the right panel.
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which provides a qualitative understanding of the relation among MPBH, k and f . This
relation roughly indicates that a peak in the power spectrum of curvature perturbations
at k ' 2 ⇥ 1014 Mpc�1 would generate a peak in the GWs spectrum at frequency f ⇠
0.3 Hz. Moreover, as the sensitivity is maximum for LISA at f ⇠ mHz, the peak in PR
should be around k ⇠ 1012 Mpc�1 which is consistent with what is shown in figure 1. This
scaling can further be used to roughly figure out what mass range of PBHs can possibly be
probed by means of their secondary GWs signatures using the ground based detectors such
as Advanced LIGO. The maximal sensitivity of the projected design of the Advanced LIGO
detector corresponds to f ⇠ 30 Hz. A stochastic GWs signal around this frequency would
correspond to very light PBHs with mass around MPBH ⇠ 1013 g ⇠ 10�20

M�. Evidently,
from equation (3.1), all such PBHs would be completely evaporated through the emission of
Hawking radiation from their formation to today and thus, can not constitute the observed
abundance of CDM.

Note that, MPBH here corresponds to the mass of a PBH at the formation epoch and
disregards any further mass growth due to merging or accretion. Moreover, there exist various
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Induced secondary GWs — effects of reheating
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(future) constraints on small scales

Gow et.al., 2020



Observational imprints of ultralight PBHs: 
 early domination and evaporation
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How to constrain imprints of ultralight PBHs ?

M ≤ 109 − 1010 gPBH with                           completely evaporate   
by BBN hence remain unconstrained.



Rajeev Kumar Jain                                        IAP Paris 2025                                    PBH from inflation: DM and GW

Ultralight PBHs — Hawking evaporation
• Non-spinning PBH

• Spinning PBH

and DM relic density, we find a negligible e↵ect of the initial PBH spin. The situation changes
only when we consider spin-2 dark sector gravitons emission as the DR particles. In this case,
we find distinguishable signatures of a non-zero initial PBH spin compared to the pure non-
spinning case.

The paper is organized as follows: in section 2, we estimate the e↵ects of including
initial PBH spins compared to the non-spinning case in the background evolution, and in
section 3, the corresponding impacts in ISGWB are discussed. We use section 4 to study
the possibilities of dark radiation, dark matter, and baryogenesis for particles emitted from
initially spinning PBHs. Finally, we discuss our results and implications in section 5. We
work with c = ~ = kB = 1 and also set the reduced Planck mass M

2

Pl
= (8⇡G)�1 to unity,

unless explicitly written.

2 Spinning PBHs, their evaporation, and the background evolution

It is well known that black holes (BH) evaporate via Hawking radiation, and the emitted
particles exhibit a near thermal spectrum. For the case of a Schwarzschild (non-rotating and
uncharged) BH, the horizon temperature is given by
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and the lifetime of a BH or the time scale of its complete evaporation can be written as,
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Here the graybody factor G ⇡ 3.8, g?,H is the number of degrees-of-freedom for particles
with masses below TBH and g⇤,H is average over PBH lifetime [76, 114]. These formulas get
modified for spinning PBHs. For a spinning (but uncharged) PBH, the horizon temperature
is given by,
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where a⇤ is the reduced spin parameter, defined by a⇤ = JM
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and J is the magnitude

of the angular momentum. The time evolution of mass and spin follow the first-order coupled
di↵erential equations,
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Here � and " are to be determined by taking into account the sum of contributions from all
possible stable and unstable particles emitted due to the Hawking radiation and are functions
of PBH mass M(t) and spin a(t) at time t [114–118]. For spinning PBHs, evaporation is more
e�cient, and the rate increases. We solve equation (2.4) and (2.5) to obtain the lifetime of
a spinning PBH, �tPBH, which depends both on the initial spin and mass of PBH and
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a⇤ MPBH = 102 g MPBH = 104 g MPBH = 106 g MPBH = 108 g

0.0 1.0 1.0 1.0 1.0

0.1 0.976899 0.967814 0.972579 0.975514

0.2 0.962462 0.951945 0.957989 0.961175

0.3 0.938191 0.928076 0.930649 0.936888

0.4 0.903097 0.894256 0.896733 0.901647

0.5 0.858785 0.849704 0.852926 0.857398

0.6 0.804028 0.79565 0.798765 0.802748

0.7 0.736373 0.728771 0.731148 0.735063

0.8 0.654221 0.64797 0.650297 0.652996

0.9 0.555112 0.549758 0.55136 0.553933

0.99 0.439075 0.435225 0.437123 0.438618

0.999 0.421827 0.417918 0.419717 0.421357

Table (1) We tabulate the values of the function F(a⇤,MPBH) for spinning PBHs for di↵er-
ent values of a⇤ and for four reference values of MPBH, computed using the code BlackHawk.
We find that the dependence of F(a⇤,MPBH) on the PBH mass is weak and thus can be
neglected for the PBHs mass range of our interest.

introduce F(a⇤,MPBH) as the ratio between �tPBH and the lifetime of the Schwarzschild
PBH as, �t

S

PBH
,

�tPBH = �t
S

PBH F(a⇤,MPBH) . (2.6)

Since the function F(a⇤,MPBH) can not be calculated analytically, we estimate it numerically
using the publicly available code BlackHawk [119, 120]. We have tabulated the values of
F(a⇤,MPBH) computed using BlackHawk

1 in Table 1. As evident from this table, for the
mass range of our interest, F(a⇤,MPBH) bears a negligible dependence on MPBH, and we can
write,

�tPBH ⇡ �t
S

PBH F(a⇤) . (2.7)

This allows us to fit the function with a polynomial of a⇤ as

F(a⇤) =
4X

n=0

cna
n

⇤ +O(a5⇤) , (2.8)

where we neglect the higher-order terms as their contribution becomes insignificant. We find
the values of coe�cients cn as; c0 = 1.0, c1 = �0.183014, c2 = �0.086326, c3 = �0.195741
and c4 = �0.110894 to fit the numerically obtained F(a⇤). The very weak dependence of
F(a⇤) on initial mass MPBH is evident from the right panel of figure 1 as the data points for
di↵erent MPBH fall on top of each other. The left panel of Fig. 1 shows the time evolution

1We find a slight mismatch between the values of F(a⇤,MPBH) from BlackHawk and FRISBHEE [118]. For
the estimation of F(a⇤,MPBH) and interpolation in equation (2.8), we only use the results from BlackHawk.

– 4 –

BlackHawk

N. Bhaumik, A. Ghoshal, RKJ & M. Lewicki, JHEP 05, 169 (2023)
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Ultralight PBHs — early matter dominated epoch
Background expansion
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Ultralight PBHs — Contributions to perturbations

• Poisson Distribution 
of PBHs  

• Cutoff for scales 
below PBH mean 
distance  

• Finite duration of 
PBH domination 
(Non-linearity bound)

Papanikolaou et. al. (2021), Domenech et. al. (2021)
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Doubly peaked GWs — with and without PBH spin 
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N. Bhaumik, A. Ghoshal, RKJ & M. Lewicki, JHEP 05, 169 (2023)
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Extra relativistic dof from PBH evaporation
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N. Bhaumik, A. Ghoshal, RKJ & M. Lewicki, JHEP 05, 169 (2023)
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Heavy dark matter from PBH evaporation
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Future GWs and CMB complementarity 

N. Bhaumik, A. Ghoshal, RKJ & M. Lewicki, JHEP 05, 169 (2023)



PBH, stochastic GWs and Pulsar 
Timing Array (PTA) detection



Rajeev Kumar Jain                                        IAP Paris 2025                                    PBH from inflation: DM and GW

Stochastic GWs — PTA detection
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Stochastic GWs — PTA detection
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Stochastic GWs from PBHs — PTA signal

CMB  
scales

PTA 
scales

N. Bhaumik, RKJ and M. Lewicki, Phys. Rev. D 108,123532 (2023)



Rajeev Kumar Jain                                        IAP Paris 2025                                    PBH from inflation: DM and GW

Stochastic GWs from PBHs — PTA signal

N. Bhaumik, RKJ and M. Lewicki, Phys. Rev. D 108,123532 (2023)
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Stochastic GWs from PBHs — PTA signal

Bayesian analysis using PTArcade

N. Bhaumik, RKJ and M. Lewicki, Phys. Rev. D 108,123532 (2023)
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Stochastic GWs from PBHs — PTA signal
Other observational constraints



PBH evaporation and the 
memory burden effect
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Memory burden effect and its implications
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MPBH/2
with memory burden newly formed

• Semiclassical description of Hawking evaporation can not hold over the entire 
black hole lifetime

• Quantum backreaction must be taken into account through memory burden effect

• Semiclassical formalism of Hawking evaporation breaks down at the latest by the 
time a black hole loses half of its mass due to Hawking evaporation

• The gapless microscopic energy states at the start of Hawking evaporation, 
allowing a maximal storage capacity of information, can no longer stay gapless 
after the mass of the black hole reduces significantly from its initial value.

Dvali et. al. (2020), Dvali et. al. (2024), Alexandre et. al. (2024)
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Memory burden effect and its implications

• What are the imprints of memory burden effect on 
the induced GW spectrum?

• Can non-trivial reheating mimic these signatures?
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Memory burden effect and its implications

N. Bhaumik, M. R.Haque, RKJ & M. Lewicki, JHEP 10, 142 (2024)
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S(M) = M2/2M2
Pl

: mass dependent entropy of PBH

Memory burden effects can slow down the evaporation of  
a black hole, thus prolonging its lifetime 

Is there a degeneracy between the two effects ?
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Memory burden effect and its implications
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Memory burden effect and its implications
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Memory burden effect and its implications
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A recent review on PBH and GW

A very comprehensive up-to-date review (~200 pages)
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Conclusions
• PBHs are novel candidates for the cold DM in the universe — an 

important probe of small scale dynamics during inflation

• Inflation can produce significant abundance of PBHs — single field 
inflection point models are useful — model dependent results

• Interesting observational implications — induced GWs on scales 
probed by LISA, DECIGO or BBO

• Hawking evaporation imprints — dark radiation and dark matter (non-
thermal mechanism) — complementarity between GW and CMB

• Induced GWs from ultralight PBHs can explain the PTA results

• Interesting imprints of memory burden effect — probing quantum   
effects through classical GWs
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