Formation de planètes par instabilité nucléée

Yann Alibert

C. Mordasini, W. Benz, O. Mousis, C. Winisdoerffer, I. Baraffe & G. Chabrier

Résumé

- Contraintes observationnelles
- Modèles de formation
 - instabilité nucléée (core-accretion model)
 - instabilité de disque
- Modèles étendus
 - → Temps de formation
 - ➡ Formation du système solaire
 - ➡ Exoplanètes

Planètes extrasolaires

- Très grande diversité
 - masse : quelques $M_{\oplus} \longrightarrow 17 M_{\rm J}$
 - demi grand-axe : $0.02 \text{ AU} \longrightarrow 6\text{AU}$
 - effet de métallicité

Durée de vie des disques

• mesures par excès infrarouge (photométrie bande L (3.4 μ m))

+ temps de vie relativement court ($\tau_{1/2} \sim 3$ Myr)

Les planètes géantes doivent se former en $\sim 6 - 8$ Myr

Masse des disques protoplanétaires

- Emission dans le continuum (mm)

- Minimum Mass Solar Nebula e.g. Ruden 2000

Masse typique de l'ordre de 0.001 à 0.1 M_{\odot}

Jupiter et Saturne

Structure interne

Composition atmosphérique : X/H comparé à solaire

S	2.7 ± 0.6	Хе	2.1 ± 0.4
•			
Ν	3.2 ± 1.2	Kr	2.4 ± 0.4
С	3.7 ± 0.9	Ar	1.8 ± 0.4

Mahaffy et al. 2000; Wong et al. 2004

С	3.2 ± 0.8	С	8.1 ± 1.6
Ν	2.4 ± 0.5		
S	~ 12 ??		

Brigg & Sackett 1989, Kerola et al. 1997 Flasar et al. 2005 Yann ALIBERT - IAP - 06/01/06

Résumé des contraintes

- Système solaire
- Exoplanètes
- Disque protoplanétaires

Un modèle de formation de planètes doit satisfaire l'ensemble de ces contraintes

Modèle d'instabilité nucléée (Pollack et al. 1996)

Formation en trois phases à partir d'un embryon de $\sim 0.5 M_{\oplus}$

- 1) accrétion des planetesimaux de la feeding zone
- 2) accrétion lente de solides et de gaz

 $R_{\text{planete}} = R_{\text{Hill}}$

taille de la FZ $\propto R_{\rm Hill} \propto M_{\rm p}^{1/3}$

3) plus d'équilibre \implies runaway \implies planète géante

Modèle d'instabilité nucléée (Pollack et al. 1996)

- \implies temps de formation donné par la phase 2
- → 8-10 Mans dans une nébuleuse massive
 - ➡ problème d'échelle de temps

Instabilité gravitationnelle

- Mayer et al. (2004) :
 - masse du disque : 0.07 0.125 ${\it M}_{\odot}$
 - taille du disque : 20 AU
 - fragmentation si $Q \equiv \frac{C_s \Omega}{\pi \Sigma G} \leq 1$

Résultat :

- formation de surdensités
- sur un temps dynamique
- \square masse \sim quelques $M_{\rm J}$

Planètes extrasolaires & migration

Planètes géantes très proches de leur étoile centrale

Modèles étendus

Temps de formation

 $\,$ $\,$ Disque initial $\Sigma_P \propto r^{-2}$, $\Sigma_J = 7.5 {
m g/cm}^2$ (modèle J2 de P96)

• Accélération par un facteur $\sim 30 - 40$

Jupiter et Saturne

Structure interne

Composition atmosphérique : X/H comparé à solaire

S	2.7 ± 0.6	Хе	2.1 ± 0.4
•			
Ν	3.2 ± 1.2	Kr	2.4 ± 0.4
С	3.7 ± 0.9	Ar	1.8 ± 0.4

Mahaffy et al. 2000; Wong et al. 2004

С	3.2 ± 0.8	С	8.1 ± 1.6
Ν	2.4 ± 0.5		
S	~ 12 ??		

Brigg & Sackett 1989, Kerola et al. 1997 Flasar et al. 2005 Yann ALIBERT - IAP - 06/01/06

Jupiter et Saturne

- Observations:
 - Structure interne
 - $\blacktriangleright M_{\text{coeur}}, M_{\text{planete}}, a_{\text{planete}}, Z \longrightarrow 8$
 - Composition atmosphérique
 8
- Degrés de liberté :
 - Disque initial
 - $\blacktriangleright M_{\text{disque}}, \tau_{\text{disque}} \longrightarrow 2$
 - Conditions initiales

 \blacktriangleright $a_{\text{ini},\text{J}}$, $a_{\text{ini},\text{S}}$, $t_{\text{ini},\text{S}} - t_{\text{ini},\text{J}}$, \longrightarrow 3

Inconnue : taux de migration de type I

Formation de Jupiter

faible taux de migration

fort taux de migration

Formation de Saturne

faible taux de migration

- \blacktriangleright point de départ $\sim 12~{\rm AU}$
- → structure interne compatible avec les observations

pas de Saturne avec un fort taux de migration

→ courbe bleue (c)

Alibert et al. 2005

Formation de Jupiter et formation de Saturne

Enrichissements en espèces volatiles

1	100				· · · · · · · · · · · · · · · · · · ·	
	90		C	Cooling curve at 15 A	U 5 AU	
_	80		NH ₃ -H ₂ O)		
Ire (K)	70		CO ₂	$ CO_2 - 5.75H_2O^-$	f <u>f</u>	
peratu	60	Xe	- 5.75H ₂ O			
ſem	50			CH ₄ - 5.75H ₂ O	N	5.66H2O
	40	CO	<u>- 5.75H2O</u> Kr - 5.66H		Ar - 5.66H	120
	30				/	
	20 1	0 ⁻⁹		10 ⁻⁸	10 ⁻⁷	<u></u>] 10 ⁻⁶
		Log ₁₀ [Total pressure (bars)]				
		_	Espèce	Observé	Calculé	-
			Ar	1.8 ± 0.4	2.	
			Kr	2.4 ± 0.4	2.1	
			Xe	2.1 ± 0.4	2.6	
			С	3.7 ± 0.9	2.8	
			Ν	3.2 ± 1.2	2.5	
			S	2.7 ± 0.6	2.1	

- \checkmark P et T dans le disque
- \Rightarrow composition des planetesimaux
- Modèle de formation
- \Rightarrow composition globale

Espèce	Observé	Calculé
Ar		1.7
Kr		1.9
Xe		2.3
С	3.2 ± 0.8	2.4
Ν	2.4 ± 0.5	2.2
S		1.9

Mousis et al. 2005

Alibert et al. 2005

Planètes extrasolaires

- Très grande diversité résultant probablement des CI :
 - Disque protoplanétaire
 - Composition du gaz
 - Environnement
- Pour expliquer les observations, il faut prendre en compte
 1) les CI, avec leur lois de probabilité,
 - 2) les biais observationnels.

\implies approche Mont	te-Carlo
--------------------------	----------

Monte Carlo : Ida & Lin 2004,2005

- Géantes $(M_{env}/M_{coeur} > 10)$ • Glacées $(M_{env}/M_{coeur} < 10)$ • Rocheuses $(M_{env}/M_{coeur} < 10)$
- séparation des types
- ➡ "planet desert"
- ➡ effet de Fe/H

Différences dans les modèles de formation

Cas J1 de Pollack et al. 1996

Monte-Carlo : conditions initiales

- Disque protoplanétaire
 - masse totale, structure initiale ($\Sigma \propto r^{-3/2}$)
 - métallicité
 - taux de photoévaporation
 - paramètre de viscosité (α)
 - ⇒ temps de vie
- Planète
 - position initiale
 - date du début de formation
- Planétésimaux
 - taille (100 km)
 - propriétés physiques (glace)

Propriétés des disques : métallicité

Nordström et al. 2005

Propriétés des disques : masse

Yann ALIBERT - IAP - 06/01/06

Propriétés des disques : temps de vie

taux de photoévaporation :

 $\Rightarrow \sim 3 \times 10^{-9} M_{\odot} / \text{yr} < \dot{M}_W < \sim 1.5 \times 10^{-8} M_{\odot} / \text{yr}$

Monte-Carlo : conditions initiales

métallicité :

Fe/H = -0.4, Fe/H = -0.07, Fe/H = 0.16, Fe/H = 0.3

- masse du disque : 5 valeurs gaussien en $\log \Sigma_0$, $\mu = 2.42$, $\sigma = 0.74$
- point de départ des embryons : 10 valeurs uniforme en log a, entre 1 et 20 AU
- taux de photoévaporation : 10 valeurs uniforme entre $3 \times 10^{-9} M_{\odot}$ /yr et $1.5 \times 10^{-8} M_{\odot}$ /yr
- temps de départ : 4 valeurs uniforme entre 0 et 4 Mans
 - → $4 \times 5 \times 10 \times 10 \times 4 \sim 8000$ modèles ~ 20000 heures

Biais observationel

Simulations Monte-Carlo par D. Naef
 eccentricité, masse, période, programme d'observations
 biais observationel

Biais observationel

- Ia plupart des embryons ne deviennent pas des géantes
- seule la partie emergée de l'iceberg est détectable

Msin(i) vs a

- masses légèrement trop élevées
- migration sous-estimée

Effet de métallicité

Sans biais observationnel

➡ planètes massives plus
 nombreuses dans les
 systèmes riches en
 métaux

Effet de métallicité

Avec biais observationnel

- Effet de métallicité :
- les planètes massives se forment dans les disques riches en métaux
- 2) les techniques de détection actuelles empèchent l'observation de planètes peu massives

Conclusions

- Temps de migration, evolution du disque & formation comparables
 - → prise en compte des 3 effets dans les modèles de formation
 - plus de problème d'échelle de temps
- Modèles étendus
 - ➡ formation de J & S dans le même disque
 ➡ formation des exoplanètes, approche MC
- Amélioration des modèles :
 - déposition de masse par les planétésimaux
 - migration dans les modèles MC
 - modèles de disques plus réalistes (gaz & solides)